# Reconfiguration Problems， Hardness of Approximation，and Gap Amplification： What Are They？ <br> Proc．35th Annu．ACM－SIAM Symp．Discrete Algorithms（SODA）， 2024 

# Naoto Ohsaka 

（CygerAgent，Inc．）

## Prologue：Sliding block puzzle



ゲームと
Games，Puzzles，
－Complexity of reachability was open for 40 years．．．
These puzzles are very much in want of a theory．Short of trial and error， no one knows how to determine if a given state is obtainable from another given state ［Martin Gardner．Scientific American 1964］
－PSPACE－complete［Flake－Baum．Theor．Comput．Sci．2002］ even if only $\square \square$ and Eare available［Hearn－Demaine．Theor．Comput．Sci．2005］

Reconfiguration Problems, Hardness of Approximation, and Gap Amplification:
What Are They?

## Intro of reconfiguration

Imagine connecting a pair of feasible solutions (of NP problem) under a particular adjacency relation
Q. Is a pair of solutions reachable to each other?
Q. If so, what is the shortest transformation?
Q. If not, how can the feasibility be relaxed?

Q. Is the space of feasible solutions entirely connected?

## Example 1-1

## 3-SAT Reconfiguration

[Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]

- Input: 3-CNF formula $\varphi$ \& satisfying $\sigma_{s}, \sigma_{t}$
- Output: $\quad \sigma=\left\langle\sigma^{(0)}=\sigma_{s}, \ldots, \sigma^{(l)}=\sigma_{t}\right\rangle$ (reconf. sequence) s.t.
$\sigma^{(i)}$ satisfies $\varphi$ (feasibility) $\operatorname{Ham}\left(\sigma^{(i-1)}, \sigma^{(i)}\right)=1$ (adjacency on hypercube)


## YES case

$\varphi=(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z})$
$\sigma_{s}=(1,0,0)$
$\sigma_{t}=(0,1,0)$
$\triangle$ Length of $\sigma$ can be $2^{\Omega(\text { input size) }}$


## Example 1-2

## 3-SAT Reconfiguration

[Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]

- Input: 3-CNF formula $\varphi$ \& satisfying $\sigma_{s}, \sigma_{t}$
- Output: $\boldsymbol{\sigma}=\left\langle\sigma^{(0)}=\sigma_{s}, \ldots, \sigma^{(l)}=\sigma_{t}\right\rangle$ (reconf. sequence) s.t.
$\sigma^{(i)}$ satisfies $\varphi$ (feasibility)
$\operatorname{Ham}\left(\sigma^{(i-1)}, \sigma^{(i)}\right)=1$ (adjacency on hypercube)


## NO case

$\varphi=(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z})$
$\sigma_{s}=(1,0,0)$
$\sigma_{t}=(1,1,1)$
$\triangle$ Length of $\sigma$ can be $2^{\Omega(\text { inut size) }}$


## Example 2-1

## Independent Set Reconfiguration

[Hearn-Demaine. Theor. Comput. Sci. 2005]

- Input: Graph G \& independent sets $I_{s}, I_{t}$ of size $k$
- Output: $\mathscr{L}=\left\langle I^{(0)}=I_{s}, \ldots, I^{(\ell)}=I_{t}\right\rangle$ (reconf. sequence) s.t.

$$
I^{(i)} \text { is independent \& }\left|I^{(i)}\right| \geq k-1 \text { (feasibility) }
$$

$$
\left|I^{(i-1)} \Delta I^{(i)}\right|=1 \text { (adjacency called token-addition-removal) }
$$

YES case (k=3)


## Example 2-2

## Independent Set Reconfiguration

[Hearn-Demaine. Theor. Comput. Sci. 2005]

- Input: Graph G \& independent sets $I_{s}, I_{t}$ of size $k$
- Output: $\mathscr{L}=\left\langle I^{(0)}=I_{s}, \ldots, I^{(l)}=I_{t}\right\rangle$ (reconf. sequence) s.t.
$I^{(i)}$ is independent \& $\left|I^{(i)}\right| \geq k-1$ (feasibility)
$\left|I^{(i-1)} \Delta I^{(i)}\right|=1$ (adjacency called token-addition-removal)
NO case ( $k=3$ )



## Recipe for defining reconfiguration problems

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

1. Source problem in NP

- Ask the existence of a feasible solution
E.g., satisfying assignments; independent sets


## 2.Transformation rule

- Define a (symmetric) adjacency relation btw. a pair of solutions E.g., single assignment flip; addition or removal of a single vertex

Many reconfiguration problems derived from
Satisfiability, Coloring, Vertex Cover, Clique, Dominating Set, Feedback Vertex Set, Steiner Tree, Matching, Spanning Tree, Shortest Path, Set Cover, Subset Sum, ...
See [Nishimura. Algorithms 2018] [van den Heuvel. Surv. Comb. 2013] [Hoang. https://reconf.wikidot.com/]

## What we want to do in CS Theory

Elucidate the computational complexity of reconfiguration problems
Q. How much resources are required (w.r.t. the input size)?
time, space, randomness,
\# gates, nondeterminism,


## Complexity of reconfiguration problems

| Source problem | Existence | Reconfiguration |
| :---: | :---: | :---: |
| Satisfiability | NP-complete | PSPACE-complete [Gopalan-Kolaitis-ManevaPapadimitriou. SIAM J. Comput. 2009] |
| Independent Set | NP-complete | PSPACE-complete <br> [Hearn-Demaine. Theor. Comput. Sci. 2005] |
| Matching | P | P [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011] |
| 3-Coloring | NP-complete | P [Cereceda-van den Heuvel-Johnson. J. Graph Theory 2011] |
| Shortest Path | P | PSPACE-complete <br> [Bonsma. Theor. Comput. Sci. 2013] |
| Independent Set on bipartite graphs | P | NP-complete [Lokshtanov-Mouawad. ACM Trans Algorithms 2019; SODA 2018] |

## © A personal motivation

"NATURAL" PSPACE-complete problems

- Connecting a pair of feasible solutions is a reasonable idea
- Simulating a (polynomial-space) nondeterministic Turing machine $\triangle$ Quantified Boolean Formula is another PSPACE-complete problem $\exists x_{1} \forall x_{2} \exists x_{3} \ldots \forall x_{n} \varphi\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)$ ?
-Easily derived from NP problems


## BLUE OCEAN. 3 (at least for hardness of approximation)

# Reconfiguration Problems， Hardness of Approximation，and Gap Amplification： What Are They？ 

| Gap Preserving Reductions Between |
| :--- |
| Reconfiguration Problems |
| Naoto Ohsaka $⿴ 囗 ⿱ 一 一 厶 儿$ © |

40th Int．Symp．on Theoretical Aspects of Computer Science（STACS）， 2023

## Optimization versions of reconfiguration problems

Even if...

- (2a)NOT reconfigurable! and/or
- 因many problems are PSPACE-complete!

Still want an "approximate" reconf. sequence (e.g.) made up of almost-satisfying assignments or not-too-small independent sets $\downarrow$

Let's RELAX feasibility!!

## Example 1+

## Maxmin 3-SAT Reconfiguration

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]
-Input: 3-CNF formula $\varphi$ \& satisfying $\sigma_{s}, \sigma_{t}$

- Output: $\boldsymbol{\sigma}=\left\langle\sigma^{(0)}=\sigma_{s}, \ldots, \sigma^{(l)}=\sigma_{t}\right\rangle$ (reconf. sequence) s.t.
(i) (feasibility)

Ham ( $\left.\sigma^{(i-1)}, \sigma^{(i)}\right)=1$ (adjacency on hypercube)

- Goal: $\quad \max _{\sigma} \operatorname{val}_{\varphi}(\sigma) \stackrel{\text { def }}{=} \min _{i}$ (frac. of satisfied clauses by $\sigma^{(i)}$ )
$\varphi=(\bar{x} \vee \bar{y} \vee z) \wedge(\bar{x} \vee y \vee \bar{z}) \wedge(x \vee \bar{y} \vee \bar{z})$
- $\sigma_{s}=(1,0,0)$
- $\sigma_{t}=(1,1,1)$
$\rightarrow \operatorname{val}_{\varphi}(\sigma)=\min \left\{1, \frac{2}{3}, 1\right\}=\frac{2}{3}$
$\triangle$ Length of $\sigma$ can be $2^{\Omega \text { (input size) }}$



## Example 2+

## Maxmin Independent Set Reconfiguration

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

- Input: Graph G \& independent sets $I_{s}, I_{t}$ of size $k$
- Output: $\mathscr{L}=\left\langle I^{(0)}=I_{s}, \ldots, I^{(l)}=I_{t}\right\rangle$ (reconf. sequence) s.t.
$I^{(i)}$ is independent $I^{(i)} \geq \geq 1$ (feasibility)
$\left|I^{(i-1)} \Delta I^{(i)}\right|=1$ (adjacency called token-addition-removal)
-Goal: $\quad \max _{\mathscr{J}} \operatorname{val}_{G}(\mathscr{D}) \stackrel{\text { def }}{=} \min _{i} \frac{\left|I^{(i)}\right|}{k-1}$



## Questions of interes $\dagger$ about approximate reconfiguration

Algorithmic side

- How well can we approximate reconfiguration problems?

Set Cover Reconf.
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]
Subset Sum Reconf. [Ito-Demaine. J. Comb. Optim. 2014]
Submodular Reconf. [O.-Matsuoka. WSDM 2022]

Hardness side
-How hard is it to approximate reconfiguration problems?
\&My interest [STACS 2023 \& SODA 2024]

## Known results on hardness of approximation

## NP-hardness of approx. for Maxmin SAT \& Ind. Set Reconf.

 [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011] - Not optimal $\because$ SAT Reconf. \& Ind. Set Reconf. are PSPACE-comp.- Rely on NP-hardness of approximating Max SAT \& Max Ind. Set


## 5. Open problems

There are many open problems raised by this work, and we mention some of these below:

- Can the matching reconfiguration problem for edge-weighted graphs be solved also in polynomial time? We conjecture that the answer is positive.
- Is the traveling salesman reconfiguration problem (where two tours are adjacent if they differ in two edges) PSPACEcomplete?
- Are there better approximation algorithms for the minmax POWER SUPPLY RECONFIGURATION problem? Lower bounds?
- Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?


## Known results on hardness of approximation

NP-hardness of approx. for Maxmin SAT \& Ind. Set Reconf.
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

- Not optimal $\because$ SAT Reconf. \& Ind. Set Reconf. are PSPACE-comp.
- Rely on NP-hardness of approximating Max SAT \& Max Ind. Set

Significance of showing PSPACE-hardness

- no polynomial-time algorithm ( $\mathbf{P} \neq \mathrm{PSPACE}$ )
- no polynomial-length sequence ( $N P \neq P S P A C E$ )
(probabilistically checkable proof)
(C) Reconfiguration analogue of the PCP theorem


## Our working hypothesis [0. stacs 2023]

## Reconfiguration Inapproximability Hypothesis (RIH)

Binary CSP G \& satisfying $\psi_{s}, \Psi_{t}$, PSPACE-hard to distinguish btw.

- (Completeness) $\exists \boldsymbol{\psi} \operatorname{val}_{G}(\boldsymbol{\psi})=1 \quad$ (some sequence violates no constraint)
- (Soundness) $\quad \forall \Psi \operatorname{val}_{G}(\Psi)<1-\varepsilon$ (any sequence violates $\geqslant \varepsilon$-frac. of constraints)

Binary CSP (Constraint Satisfaction Problem) in short:
Given a constraint system over variable pairs
Color each variable to satisfy as many constraints as possible E.g., 3-Coloring \& 2-SAT
Q. Which reconfiguration problems are PSPACE-hard to approximate under (seemingly) plausible RIH?

## Our working hypothesis [0. Stacs 2023]

## Reconfiguration Inapproximability Hypothesis (RIH)

Binary CSP G \& satisfying $\psi_{s}, \Psi_{t}$, PSPACE-hard to distinguish btw.

- (Completeness) $\exists \boldsymbol{\psi} \operatorname{val}_{G}(\boldsymbol{\psi})=1 \quad$ (some sequence violates no constraint)
- (Soundness) $\quad \forall \Psi \operatorname{val}_{G}(\Psi)<1-\varepsilon$ (any sequence violates $\geqslant \varepsilon$-frac. of constraints)

Q. Which reconfiguration problems are

PSPACE-hard to approximate under (seemingly) plausible RIH?

## Our (previous) results [0. Stacs 2023]

- :) Under RIH, many problems are PSPACE-hard to approximate How? Gap-preserving reductions!!

| $\exists \psi \operatorname{val}_{G}(\psi)=1$ |  | $\exists \boldsymbol{\sigma} \operatorname{val}_{\varphi}(\sigma)=1$ |
| :---: | :---: | :---: |
| (Perfect) Completeness ${ }^{\text {s }}$ |  |  |
| Soundness 7 |  |  |
| $\boldsymbol{*} \operatorname{val}_{G}(\boldsymbol{\psi})<1-\varepsilon$ |  |  |

Gap[1 vs. $1-\varepsilon$ ] Binary CSP Reconf. PROMISE: $\varepsilon \in(0,1)$ is const.

Gap[1 vs. 1-ס] 3-SAT Reconf.
© $\delta \in(0,1)$ depends only on $\varepsilon$

## Related work

Probabilistically checkable debate systems
[Condon-Feigenbaum-Lund-Shor. Chic. J. Theor. Comput. Sci. 1995]

- PCP-like charact. of PSPACE
$\bullet$ Quantified Boolean Formula is PSPACE-hard to approx.
Other optimization variants of reconfiguration (orthogonal to this study)
- Shortest sequence
[Bonamy-Heinrich-Ito-Kobayashi-Mizuta-Mühlenthaler-Suzuki-Wasa. STACS 2020]
Ito-Kakimura-Kamiyama-Kobayashi-Okamoto. SIAM J. Discret. Math. 2022]
[Kamiński-Medvedev-Milanič. Theor. Comput. Sci. 2011]
[Miltzow-Narins-Okamoto-Rote-Thomas-Uno. ESA 2016]
- Incremental optimization
[Blanché-Mizuta-Ouvrard-Suzuki. IWOCA 2020]
[Ito-Mizuta-Nishimura-Suzuki. J. Comb. Optim. 2022]
[Yanagisawa-Suzuki-Tamura-Zhou. COCOON 2021]


# Reconfiguration Problems, Hardness of Approximation, and Gap Amplification What Are They? 

Gap Amplification for Reconfiguration Problems*

Naoto Ohsaka ${ }^{\dagger}$
Proc. 35th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), 2024

Limitation of [O. STACS 2023]
(20) Inapprox. factors are not explicitly shown

Recall from [O. STACS 2023]

- RIH claims " $\exists \varepsilon>0, G a p[1$ vs. $1-\varepsilon$ ] Binary CSP Reconf. is PSPACE-h." - Can reduce to Gap[1 vs. 1- $\overline{6}$ * Reconf.
\} \delta (as well as \varepsilon ) can be arbitrarily small, because...
- $\delta$ depends on $\varepsilon$ (e.g., $\delta=\varepsilon^{2}$ )
- RIH doesn' $\dagger$ specify any value of $\varepsilon\left(e .9 ., \varepsilon=1 / 2^{10000}\right)$
$\rightarrow$ May not rule out 0.999...999-approx. for $* *$ Reconf.
(C) Gap[1 vs. 0.999] $* *$ Reconf. is PSPACE-hard only assuming RIH


## (C)Our target: Gap amplification

- (Polynomial-time) reduction that makes a tiny gap into a larger gap

In NP world...


The parallel repetition theorem [Raz. SIAM J. Comput. 1998]
$\rightarrow$ OGap[1 vs. 0.000‥001] Binary CSP is NP-hard (i.e. gap $\sim 1$ )
In reconfiguration world...
(2) Naïve parallel repetition fails to amplify gap $\varepsilon$ of Gap[1 vs. $1-\varepsilon$ ] Binary CSP Reconf. [0. arXiv 2023]

## (C )Our target: Gap amplification

-(Polynomial-time) reduction that makes a +

$$
\exists_{\text {II }} \operatorname{val}_{G}\left(w^{\prime \prime}\right.
$$

p into a larger gap


Can we derive explicit factors of -..- PSPACE-hardness of approx. only assuming RIH?

$$
\text { S Nr-icu. ie. gap } \approx 1 \text { ) }
$$

In reconfigur .ion world...
(2) Naïve parallel repetition fails to amplify gap $\varepsilon$ of Gap [1 vs. $1-\varepsilon$ ] Binary CSP Reconf. [0. arXiv 2023]

## Our results [0. SOOA 2024]

(2) Can derive explicit inapproximability factors only assuming RIH!!

|  | Maxmin Binary CSP <br> Reconfiguration | Minmax Set Cover <br> Reconfiguration |
| :---: | :--- | :--- |
| PSPACE-hardness |  |  |
| under RIH |  |  |$\quad 0.9942$ (this paper) $\quad 1.0029$ (this paper)

## Main result [0. SODA 2024]

## Gap amplification for Binary CSP Reconf.

- We prove gap amplification à la Dinur [Dinur. J. ACM 2007]
(Informal) For any small const. $\varepsilon \in(0,1)$,

| gap | alphabet size | degree | spectral expansion |
| :---: | :---: | :---: | :---: |
| 1 vs. $1-\varepsilon$ | $W$ | $d$ | $\lambda$ |
| 1 vs. $1-0.0058$ | $W^{\star}=W^{d^{\prime}} O\left(\varepsilon^{-1}\right)$ | $d^{\star}=\left(\frac{d}{\varepsilon}\right)^{O\left(\varepsilon^{-1}\right)}$ | $\lambda^{\star}=O\left(\frac{\lambda}{d}\right) d^{\star}$ |

- (). Can make $\lambda^{*} / d^{*}$ arbitrarily small by decreasing $\lambda / d$
- Alkhabet size $W^{*}$ gets gigantic depending on $\varepsilon^{-1}$

Application [0. SODA 2024]
Inapprox. of Minmax Set Cover Reconf.
-PSPACE-hard to approx. within 1.0029 under RIH

- 2-approximation is known
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]
(Informal) Gap-preserving reduction from
Gap[1, $\varepsilon$ ] Binary CSP Reconf. (with small $\lambda / d$ ) to
Gap[1, $\approx 2-\sqrt{\varepsilon}]$ Set Cover Reconf.
- Based on [Lund-Yannakakis. J. ACM 1994] but
expander mixing lemma [Alon-Chung. Discret. Math. 1988] is needed


## BREAK: Why is it accepted to SODA?

 (from my personal point of view)-(Of course) I was lucky... 190/652~29\%

- Open up the hardness-of-approximation for reconf. problems
-RIH seems to be considered somewhat important (within review)
- Nontrivial extension of Dinur's gap ampl. [Dinur. J. ACM 2007] to reconf. From arbitrarily small gap to universal const.

-Demonstrate usefulness of alphabet squaring trick [0. STACS 2023] (explained later)

In the remainder of this talk...

## Proof sketch of gap amplification

1. Preprocessing step

- Degree reduction [0. STACS 2023]
- Expanderization (skipped)

2. Powering step

- Simple appl. of [Dinur. J. ACM 2007] [Radhakrishnan. ICALP 2006] to

Binary CSP Reconf. looses perfect completeness

- TRICK: Alphabet squaring [0. STACS 2023] \& modified verifier


## Recap: Max Binary CSP

- Input: Binary CSP $G=\left(V, E, \Sigma, \Pi=\left(\pi_{e}\right)_{e \in E}\right)$, where $\pi_{e} \subseteq \Sigma^{2}$
- Output: $\psi: V \rightarrow \Sigma$
$\psi$ satisfies $(v, w)$ if $(\psi(v), \psi(w)) \in \pi_{(v, w)}$
-Goal: $\quad \max _{\psi} \operatorname{val}_{G}(\psi) \stackrel{\text { def }}{=}$ (frac. of edges satisfied by $\psi$ )

Example
-3-Coloring: $\Sigma=\{R, G, B\}, \pi_{e}=\{(R, G),(G, R),(G, B),(B, G),(B, R),(R, B)\}$
-2-SAT: $\quad \Sigma=\{0,1\}, \quad \pi_{C}=\{$ asgmt. satisfying 2-literal clause $C\}$

## Recap: Dinur's powering, in a nutshell

 [Dinur. J. ACM 2007](C)Two goals:
(Completeness)
(Soundness)

$$
\begin{array}{lll}
\exists \psi \operatorname{val}_{G}(\psi)=1 & \Rightarrow & \exists \psi^{\star} \operatorname{val}_{G^{\star}}\left(\psi^{\star}\right)=1 \\
\forall \psi \operatorname{val}_{G}(\psi)<1-\varepsilon & \Rightarrow & \forall \psi^{\star} \operatorname{val}_{G^{\star}}\left(\psi^{\star}\right)<1-\Omega(T \cdot \varepsilon) \\
\text { const. parameter }
\end{array}
$$

How? Virtually examine T edges simultaneously:
-1. Each vertex has "opinions" about the color of all vertices for simplicitys
-2. Sample a length-T random walk $\mathbf{W}$ with endpoints $x \& y$

- 3. Constraint \& agreement test over opinions of $x$ \& y along with W

Recap: Dinur's powering [Dinur. J. ACM 2007]

## Graph construction

$$
\text { Say 3-Coloring } \Sigma=\{R, G, B\}
$$

Original $G=\left(V, E, \Sigma, \Pi=\left(\pi_{e}\right)_{e \in E}\right) \rightarrow \quad \operatorname{New} G^{*}=\left(V, E^{\star}, \Sigma^{*}, \Pi^{*}\right)$ $\triangle$ G must be EXPANDER
Asgmt. $\psi: \vee \rightarrow \Sigma$


## - $\psi^{*}(x)[v] \stackrel{\text { def }}{=}$ opinion" of $x$ about the color of $v$

- edge of $G^{*}=a$ length-T random walk over $G$

Recap: Dinur's powering [Dinur. J. ACM 2007]
Graph construction

$$
\text { Say 3-Coloring } \Sigma=\{R, G, B\}
$$

Original $G=\left(V, E, \Sigma, \Pi=\left(\pi_{e}\right)_{e \in E}\right) \rightarrow \quad$ New $G^{\star}=\left(V, E^{\star}, \Sigma^{\star}, \Pi^{\star}\right)$ $\triangle G$ must be EXPANDER
Asgmt. $\psi: V \rightarrow \Sigma \quad \rightarrow \quad$ Asgmt. $\psi^{\star}: V \rightarrow \Sigma^{V}$


- $\psi^{\star}(x)[v] \stackrel{\text { def "opinion" of } x \text { about the color of } v}{v}$

Recap: Dinur's powering [Dinur. J. ACM 2007]
Graph construction

$$
\text { Say 3-Coloring } \Sigma=\{R, G, B\}
$$

Original $G=\left(V, E, \Sigma, \Pi=\left(\pi_{e}\right)_{e \in E}\right) \rightarrow \quad$ New $G^{\star}=\left(V, E^{\star}, \Sigma^{\star}, \Pi^{\star}\right)$
$\triangle G$ must be EXPANDER
Asgmt. $\psi: V \rightarrow \Sigma \quad \rightarrow \quad$ Asgmt. $\psi^{\star}: V \rightarrow \Sigma^{V}$


- $\psi^{\star}(x)[v] \stackrel{\text { def }}{=}$ "opinion" of $x$ about the color of $v$
- edge of $G^{*}=a$ length-T random walk over $G$

Recap: Dinur's powering [Dinur. J. ACM 2007]
Verifier's test on $G^{*}(1)$ [Radhakrishnan. ICALP 2006]
Pick a random walk $W=\left\langle e_{1}, \ldots, e_{T}\right\rangle$ from $x$ to $y$ $\psi^{\star}(x) \& \psi^{\star}(y)$ pass the test at $e_{i}=(v, w)$ if $x \& y$ agree on color of $(v, w)$ opinions about $(v, w)$ satisfy $\pi_{(v, w)}$
$\psi^{\star}$ satisfies $W \stackrel{\text { def }}{\Longleftrightarrow} \psi^{\star}(x) \& \psi^{\star}(y)$ pass test at every edge in $W$


Recap: Dinur's powering [Dinur. J. ACM 2007]
Verifien's test on G* (2) [Radhakrishnan. ICALP 2006]
Pick a random walk $W=\left\langle e_{1}, \ldots, e_{T}\right\rangle$ from $x$ to $y$
$\psi^{\star}(x) \& \psi^{\star}(y)$ pass the test at $e_{i}=(v, w)$ if
$\bullet \psi^{\star}(x)[v]=\psi^{\star}(y)[v]$

- $\psi^{\star}(x)[w]=\psi^{\star}(y)[w]$
- $\left(\psi^{\star}(x)[v], \psi^{\star}(x)[w]\right)$ satisfies $e_{i}$


Recap: Dinur's powering [Dinur. J. ACM 2007]

Pick a random walk $\mathbf{W}=\left\langle e_{1}, \ldots, e_{T}\right\rangle$ from $x$ to $y$
$\psi^{\star}(x) \& \psi^{\star}(y)$ pass the test at $e_{i}=(v, w)$ if
$-\psi^{\star}(x)[v]=\psi^{\star}(y)[v]$
$-\psi^{*}(x)[w]=\psi^{*}(y)[w]$
$\bullet\left(\psi^{\star}(x)[v], \psi^{\star}(x)[w]\right)$ satisfies $e_{i}$


Recap: Dinur's powering [Dinur. J. ACM 2007]
Verifier's test on $G^{\star}(4)_{\text {Reatheressmanan rana } 2006]}$
Pick a random walk $W=\left\langle e_{1}, \ldots, e_{T}\right\rangle$ from $x$ to $y$
$\psi^{\star}(x) \& \psi^{\star}(y)$ pass the test at $e_{i}=(v, w)$ if
$\bullet \psi^{\star}(x)[v]=\psi^{\star}(y)[v]$

- $\psi^{\star}(x)[w]=\psi^{\star}(y)[w]$
$\bullet\left(\psi^{\star}(x)[v], \psi^{\star}(x)[w]\right)$ satisfies $e_{i}$


Recap: Dinur's powering [Dinur. J. ACM 2007]
Completeness side
(G)Goal: $\exists \psi \operatorname{val}_{G}(\psi)=1$

Optimal $\psi: V \rightarrow \Sigma$

$$
\Rightarrow \quad \exists \psi^{\star} \operatorname{val}_{G^{\star}}\left(\psi^{\star}\right)=1
$$

$\rightarrow$ let $\psi^{\star}(x)[v]=\psi^{\star}(y)[v]=\cdots=\psi(v)$


Recap: Dinur's powering [Dinur. J. ACM 2007]

## Soundness side [Radhakrishnan. ICALP 2006]

(C)Goal: $\forall \psi \operatorname{val}_{G}(\psi)<1-\varepsilon \quad \Rightarrow \quad \forall \psi^{\star} \operatorname{val}_{G^{\star}}\left(\psi^{\star}\right)<1-\Omega(T \cdot \varepsilon)$

Some $\psi: V \rightarrow \Sigma$
$\leftarrow$
plurality vote

Optimal $\psi^{\star}: \vee \rightarrow \Sigma \bigvee$

- If verifier checks one of $\varepsilon$-frac. unsat. edges $e_{i}$ w.r.t. $\psi$, $\psi^{\star}$ doesn' $\dagger$ pass test at $e_{i}$ w.p. $\Omega(1)$
- Edges in RWs W are pairwise independent \& uniform (almost) this is where expansion is applied
$\rightarrow$ ) verifier rejects w.p. $\approx \Omega(1) \cdot \varepsilon \cdot \mathbb{E}[$ length of $W]=\Omega(T \cdot \varepsilon)$



## Maxmin Binary CSP Reconfiguration

[Ito et al. Theor. Comput. Sci. 2011] [O. STACS 2023]

- Input: Binary CSP G $=\left(\mathrm{V}, E, \Sigma, \Pi=\left(\pi_{e}\right)_{e \in E}\right)$ \& satisfying $\psi_{s}, \psi_{t}: V \rightarrow \Sigma$
- Output: $\boldsymbol{\psi}=\left\langle\psi^{(0)}=\psi_{s}, \ldots, \psi^{(\ell)}=\psi_{t}\right\rangle$ (reconf. sequence) s.t.

$\operatorname{Ham}\left(\psi^{(i-1)}, \psi^{(i)}\right)=1$ (adjacency on hypercube)
- Goal: $\max _{\psi} \operatorname{val}_{G}(\Psi) \stackrel{\text { def }}{=} \min _{i}$ (frac. of edges satisfied by $\psi^{(i)}$ ) $\operatorname{OPT}_{G}\left(\Psi_{s} \leadsto \leadsto \psi_{t}\right) \stackrel{\text { def }}{=}$ max. value of $\rightarrow$
$\Rightarrow$ RIH $\Rightarrow \exists \varepsilon>0, G a p[1$ vs. $1-\varepsilon$ ] Binary CSP Reconf. is PSPACE-hard:
- OPT $_{G}\left(\psi_{s} \leadsto \leadsto \psi_{t}\right)=1$
( $\exists \boldsymbol{\psi}$ every $\psi^{(i)}$ satisfies all edges), or
- $\mathrm{OPT}_{G}\left(\psi_{s} \curvearrowleft \leadsto \psi_{t}\right)<1-\varepsilon$
( $\forall \psi$ some $\psi^{(i)}$ violates $\varepsilon$-frac. of edges)

Difficulty of powering Binary CSP Reconf.
(다) Loosing perfect completeness

All vertices should have the SAME opinion about the color of $v$

$\forall x \psi^{\star}{ }_{s}(x)[v] \stackrel{\text { def }}{=} R$
$\exists x, y \quad \psi^{\star(i)}(x)[v] \neq \psi^{\star(i)}(y)[v] \quad \forall x \quad \psi^{\star}{ }_{t}(x)[v] \stackrel{\text { def }}{=} B$
(ล) Verifier rejects $\rightarrow$

Our solution
Alphabet squaring trick ${ }_{[0.5 \text { stacs 2023] }}$
(G) Think as if opinion could take a pair of colors!

- Original $\Sigma=\{R, G, B\}$
- New $\quad \Sigma_{s q}=\{R, G, B, R G, G B, B R\}$
- $\alpha \& \beta$ are consistent $\Leftrightarrow \alpha \subseteq \beta$ or $\alpha \supseteq \beta$

|  | $R$ | $R G$ | $G$ | $G B$ | $B$ | $B R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R$ | $\ddots$ | $\bullet$ |  |  |  | $\bullet$ |
| $R G$ | $\bullet$ | $\bullet$ |  |  |  |  |
| $G$ | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |
| $G B$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |
| $B$ |  |  | $\bullet$ | $\bullet$ | $\bullet$ |  |
| $B R$ | $\bullet$ |  |  |  |  | $\bullet$ |

$\triangle$ Asgmt. on $G^{*}$ is now $\psi^{*}: V \rightarrow\left(\Sigma_{\text {sq }}\right)^{V}$, not $\psi^{\star} \cdot \forall$

Our solution

## Modifying verifier's test (1)

(C) Think as if opinion could take a pair of colors!

- Original $\Sigma=\{R, G, B\}$
- New $\quad \Sigma_{s q}=\{R, G, B, R G, G B, B R\}$
- $\alpha \& \beta$ are consistent $\Leftrightarrow \alpha \subseteq \beta$ or $\alpha \supseteq \beta$

|  | $R$ | $R G$ | $G$ | $G B$ | $B$ | $B R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R$ | $\bullet$ | $\bullet$ |  |  |  | $\bullet$ |
| $R G$ | $\bullet$ | $\bullet$ |  |  |  |  |
| $G$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |
| $G B$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |
| $B$ |  |  | $\bullet$ | $\bullet$ | $\bullet$ |  |
| $B R$ | $\bullet$ |  |  |  | $\ddots$ | $\bullet$ |

Pick RW W $=\left\langle e_{1}, \ldots, e_{T}\right\rangle$ from $x$ to $y$ as before $\psi^{\star}(x) \& \psi^{\star}(y)$ pass modified test at $e_{i}=(v, w)$ if
opinions of $x \& y$ are consistent at $(v, w)$ opinions about ( $v, w$ ) satisfy $\pi_{(v, w)}$

## Our solution

## Modifying verifier's test (2)

(C) Think as if opinion could take a pair of colors!

- Original $\Sigma=\{R, G, B\}$
- New $\quad \Sigma_{s q}=\{R, G, B, R G, G B, B R\}$
- $\alpha \& \beta$ are consistent $\Leftrightarrow \alpha \subseteq \beta$ or $\alpha \supseteq \beta$

|  | $R$ | $R G$ | $G$ | $G B$ | $B$ | $B R$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $R$ | $\ddots$ | $\bullet$ |  |  |  | $\bullet$ |
| $R G$ | $\bullet$ | $\bullet$ |  |  |  |  |
| $G$ | $\bullet$ | $\bullet$ | $\bullet$ |  |  |  |
| $G B$ |  | $\bullet$ | $\bullet$ | $\bullet$ |  |  |
| $B$ |  |  | $\bullet$ | $\bullet$ | $\bullet$ |  |
| $B R$ |  |  |  |  |  | $\bullet$ |

Pick RW W $=\left\langle e_{1}, \ldots, e_{T}\right\rangle$ from $x$ to $y$ as before $\psi^{\star}(x) \& \psi^{\star}(y)$ pass modified test at $e_{i}=(v, w)$ if


Our solution

## Modifying verifier's test (3)

(C) Think as if opinion could take a pair of colors!

- Original $\Sigma=\{R, G, B\}$
- New $\quad \Sigma_{s q}=\{R, G, B, R G, G B, B R\}$
- $\alpha \& \beta$ are consistent $\Leftrightarrow \alpha \subseteq \beta$ or $\alpha \supseteq \beta$


Pick RW W $=\left\langle e_{1}, \ldots, e_{T}\right\rangle$ from $x$ to $y$ as before
$\psi^{\star}(x) \& \psi^{\star}(y)$ pass modified test at $e_{i}=(v, w)$ if
(C1) $\psi^{\star}(x)[v] \& \psi^{\star}(y)[v]$ are consistent
(C2) $\psi^{\star}(x)[w] \& \psi^{\star}(y)[w]$ are consistent
(C3) $\left(\psi^{\star}(x)[v] \cup \psi^{\star}(y)[v]\right) \times\left(\psi^{\star}(x)[w] \cup \psi^{\star}(y)[w]\right) \subseteq \pi_{(v, w)}$
$\triangle$ This verifier is "much weaker" than before

## () Alphabet squaring

 preserves perfect completeness(C) Goal: $\mathrm{OPT}_{G}\left(\psi_{s} \leadsto \psi_{t}\right)=1 \Rightarrow \operatorname{PPT}_{G^{\star}}\left(\psi_{s}^{\star} \leadsto \leadsto \psi_{t}^{\star}\right)=1$


Can transform all $R$ opinions into all $B$ opinions via $B R$ 's

## () Alphabet squaring

 preserves perfect completeness


Can transform all $R$ opinions into all $B$ opinions via $B R$ 's

## () Alphabet squaring

 preserves perfect completeness(C) Goal: $\mathrm{OPT}_{G}\left(\psi_{s} \leadsto \psi_{t}\right)=1 \Rightarrow \operatorname{PPT}_{G^{\star}}\left(\psi_{s}^{\star} \leadsto \leadsto \psi_{t}^{\star}\right)=1$


Can transform all $R$ opinions into all $B$ opinions via $B R$ 's

Why the modified verifier works

## Soundness: Overview

(6)Goal: $\mathrm{OPT}_{G}\left(\psi_{s} \leadsto \leadsto \psi_{t}\right)<1-\varepsilon \Rightarrow \operatorname{OPT}_{G^{\star}}\left(\psi^{\star}{ }_{s} \leadsto \leadsto \psi^{\star}{ }_{t}\right)<1-\Omega(T \cdot \varepsilon)$

$$
\psi=\left\langle\psi^{(0)}, \ldots, \psi^{(\ell)}\right\rangle \underset{\text { plurality vote }}{\stackrel{\leftarrow}{\leftarrow} \quad \text { Optimal } \psi^{\star}=\left\langle\psi^{\star(0)}, \ldots, \psi^{\star(\ell)}\right\rangle}
$$



Why the modified verifier works

## Soundness: Overview

(C)Goal: $\mathrm{OPT}_{G}\left(\psi_{s} \leftrightarrow \leadsto \psi_{t}\right)<1-\varepsilon \Rightarrow \mathrm{OPT}_{G^{\star}}\left(\psi^{\star}{ }_{s} \leadsto \leadsto \psi^{\star}{ }_{t}\right)<1-\Omega(\mathrm{T} \cdot \varepsilon)$

$$
\boldsymbol{\psi}=\left\langle\psi^{(0)}, \ldots, \psi^{(l)}\right\rangle \quad \ldots \quad \text { Optimal } \psi^{\star}=\left\langle\psi^{\star(0)}, \ldots, \psi^{\star(l)}\right\rangle
$$ plurality vote

- Can show " $\exists i \operatorname{val}_{G}\left(\psi^{(i)}\right)<1-\varepsilon+0(1)$ " (slightly nontrivial)
- Suppose $\psi^{(i)}$ violates $(\mathrm{v}, \mathrm{w})$ of $G$
$\operatorname{Pr}\left[\psi^{*(i)}\right.$ fails modified test at $(v, w) \mid W$ touches $\left.(v, w)\right]=\Omega(1)$
$\triangle$ DIFFERENT from
[Radhakrishnan. ICALP 2006]
$\because \psi^{\star(i)}: V \rightarrow\left(\Sigma_{s q}\right)^{V}$ but $\psi^{(i)}: V \rightarrow \Sigma$
$\{R, G, B, R G, G B, B R\} \quad\{R, G, B\}$

Why the modified verifier works

## Soundness: Bounding failure probability

(C) Bound $\hat{\sim} \stackrel{\text { def }}{=} \operatorname{Pr}\left[\psi^{*}\right.$ fails modified test at $(v, w) \mid W$ touches $\left.(v, w)\right]$ assuming "plurality vote $\psi$ violates $\pi_{(v, w)}$ "
$P_{v} \stackrel{\text { def }}{=} \operatorname{Pr}_{x}\left[\psi^{\star}(x)[v] \ni \psi(v)\right]$ Prob. random opinion over RW from $v$ or $w$
$\left.P_{w} \stackrel{\text { def }}{=} \operatorname{Pr}_{y}\left[\psi^{\star}(y)[w] \ni \psi(w)\right]\right\}$
$p_{v} \& p_{w}$ are UNKNOWN, but... is consistent with plurality vote

(1) $\operatorname{Pr}_{x, y}\left[\psi^{\star}(x)[v] \& \psi^{\star}(y)[v]\right.$ are consist.] $\leq 2 \cdot p_{v}$
(2) $\operatorname{Pr}_{x, y}\left[\psi^{\star}(x)[w] \& \psi^{\star}(y)[w]\right.$ are consist. $] \leq 2 \cdot p_{w}$
[Radhakrishnan. ICALP 2006]
(3) $\operatorname{Pr}_{x, y}\left[\psi^{\star}(x)[v] \ni \psi(v) \& \psi^{\star}(y)[w] \ni \psi(w)\right] \geq p_{v} \cdot p_{w}$

$$
\rightarrow \bigcirc \geq \max \left\{1-2 \cdot p_{v}, 1-2 \cdot p_{w}, p_{v} \cdot p_{w}\right\} \geq(\sqrt{2}-1)^{2}
$$

Why the modified verifier works

## Where 2-factor loss comes from

- $\boldsymbol{\lambda} \& \mu$ : distribution over $\Sigma_{s q}$
- $a_{P L R} \stackrel{\text { def }}{=} \operatorname{argmax}_{a \in \Sigma} \operatorname{Pr}_{X \sim \lambda}[a \& X$ are consistent] (depending only on $\lambda$ ) this is exactly plurality vote-
- $p \stackrel{\text { def }}{=} \operatorname{Pr}_{X \sim \lambda}\left[a_{P L R} \& X\right.$ are consistent $]$
- $q \stackrel{\text { def }}{=} \operatorname{Pr}_{X \sim \lambda,}, Y \sim \mu[X \& Y$ are consistent $]$

$$
\text { ) } q \leq 2 p
$$

E.g.

- $a_{P L R}=R$
$\bullet p=0.51, q=1$

|  | $R$ | $B$ | $R B$ |
| :---: | :---: | :---: | :---: |
| $\boldsymbol{\lambda}$ | 0.51 | 0.49 | 0 |
| $\boldsymbol{\mu}$ | 0 | 0 | 1 |

Reconfiguration Problems, Hardness of Approximation, and Gap Amplification:
What Are They?

## Conclusions: We have seen...

## Reconfiguration <br> - Brand-new, puzzle-like PSPACE-complete problems

PSPACE-hardness of approximation

- May require a theory beyond the PCP theorem for NP

Gap amplification

- We *partially* made it (à la Dinur)!!

MANY OPEN QUESTIONS

- Algorithmic results? Proof of RIH? Optimal inapprox.?


## Breaking news: A few weeks ago...

## Proof of RIH

- Independently announced by [Karthik C. S.-Manurangsi. 2023. https://arxiv.org/abs/2312.17140] [Hirahara-O. 2024. https://arxiv.org/abs/2401.00474]
- Both applying PCP of proximity
[Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan. SIAM J. Comput. 2006] [Dinur-Reingold. SIAM J. Comput. 2006]

Tight NP-hardness [Karthik C. S.-Manurangsi. 2023]

- Binary CSP Reconf. is NP-hard to approx. within $\frac{1}{2}+\varepsilon$
- Set Cover Reconf. is NP-hard to approx. within $2-\varepsilon$

