2017/4/6 WWW'17@Perth, Australia

Portfolio Optimization for Influence Spread Naoto Ohsaka (UTokyo) Yuichi Yoshida (NII \& PFI) Kawarabayashi Large Graph Project

$$
\pi=0.2 \frac{a}{b}+0.3 \frac{a}{c}+0.5 \frac{d}{\text { a }}
$$

Influence maximization

Find the most influential group from a social network Motivated by viral marketing [Domingos-Richardson. KDD'01]

Discrete optimization problem under stochastic models [Kempe-Kleinberg-Tardos. KDD'03]
$\max _{\mathbf{E}} \mathbf{[c a s c a d e}$ size trigger by $\left.A\right]$ $A:|A|=k$ \# vertices influenced

Greedy strategy is $1-\mathrm{e}^{-1} \approx 63 \%$-approx. [Nemhauser-Wolsey-Fisher. Math. Program.'18] Due to monotonicity \& submodularity [Kempe-Kleinberg-Tardos. KDD'03]

Is maximizing expectation enough?

Risk of having small cascades

Q. Which is better, \wedge or Ω ?

Need a good risk measure for finding a low-risk strategy

Popular downside risk measures

 in finance economics \& actuarial science Value at Risk at $\alpha\left(\mathrm{VaR}_{\alpha}\right)=\alpha$-percentile Conditional Value at Risk at $\alpha\left(\mathrm{CVaR}_{\alpha}\right)$ \fallingdotseq expectation in the worst α-fraction of cases α : significance level (typically 0.01 or 0.05)

Cascade size
CVaR is appropriate in practice $\&$ theory coherence, convex/concave, continuous

Optimizing CVaR

Much effort in continuous optimization
[Rockafellar-Uryasev. J. Risk'00] [Rockafellar-Uryasev. J. Bank. Financ.'02]

Solve $\max _{A:|A|=k} \mathrm{CVaR}_{\alpha}$ [cascade size triggered by $\left.A\right]$?
NOT submodular
Poly-time approximation is impossible under some assumption [Maehara. Oper. Res. Lett.'15]

Our approach is portfolio optimization

Return $=0.2 \cdot 5+0.3 \cdot 4+0.5 \cdot 6=\mathbf{5 . 2}$ We found poly-time approximation is possible!!

Our contributions

(1) Formulation

Portfolio optimization for maximizing CVaR
(2) Algorithm

Constant additive error in poly-time
(3) Experiments

Our portfolio outperforms baselines

Related work

[Zhang-Chen-Sun-Wang-Zhang. KDD'14]
\rightarrow Find smallest A s.t. VaR \geq thld.
[Deng-Du-Jia-Ye. WASA'15]

- Find A s.t. (\# vertices influenced by A w.h.p.) \geq thld.
- No approx. guarantee

Robust influence maximization
[Chen-Lin-Tan-Zhao-Zhou. KDD'16] [He-Kempe. KDD'16]

- Model parameters are noisy or uncertain
- Robustness is measured by \mathbf{E} [cascade size]

These are single set selection problems

Formulation

Diffusion process [Goldenberg-Libai-Muller. Market. Lett.'01]

Graph $G=(V, E)$
Edge prob. $p: E \rightarrow[0,1]$

uv lives w.p. puv $2^{|E|}$ outcomes

(b) (a (d) ©	$\begin{array}{ll} \text { (b) } & \text { (a) } \\ \text { (d) } & \text { c } \end{array}$	$\begin{array}{lr} \hline \text { (b) } & \text { (a) } \\ \text { (d) } \rightarrow \text { (} \end{array}$	
(b) (a)	$\begin{aligned} & \text { (b) © } \\ & \text { (a) } \end{aligned}$	$\begin{aligned} & (b) \leftarrow \text { (a) } \\ & \text { (d) } \rightarrow \text { (c) } \end{aligned}$	
	$\begin{aligned} & \text { (b) (a) } \\ & \text { (a) © } \end{aligned}$	$\begin{array}{ll} \text { (b) } a \\ \text { (d) } \rightarrow \text { a } \end{array}$	$\begin{array}{lr} \text { b } \\ \text { (a) } \rightarrow \text { (} \end{array}$
$\begin{aligned} & \text { (b) } \leftarrow \text { a } \\ & \text { (a) (c } \end{aligned}$	$\begin{aligned} & \text { (b) } \leftarrow \\ & \text { (a) }(c) \end{aligned}$		

A influences v in the diffusion process
A can reach v in the random graph
$X_{A}=$ r.v. for \# vertices reachable from A in the random graph

Formulation
k-vertex portfolio, $\mathrm{E}[\cdot]$ and $\mathrm{CVaR}_{\alpha}[\cdot]$
$\boldsymbol{\pi}:\binom{|V|}{k}$-dim. vector s.t. $\|\boldsymbol{\pi}\|_{1}=1$
E.g., $k=1, \pi_{a}=\pi_{b}=0.5$

(d)		$\text { (d) } \rightarrow$	$\rightarrow \text { (c) }$
(d)			
(d)		(d)	

Dist. of $\langle\boldsymbol{\pi}, \mathbf{X}\rangle=\pi_{a} X_{a}+\pi_{b} X_{b}$
$\mathbf{E}\left[\pi_{a} X_{a}+\pi_{b} X_{b}\right]=2.25$
$\mathrm{CVaR}_{0.25}\left[\pi_{a} X_{a}+\pi_{b} X_{b}\right]=\underline{1.25}$ worst 0.25 -fraction ${ }_{\mathbf{1 0}}$

Formulation
k-vertex portfolio, $\mathbf{E [\cdot]}$ and $\mathrm{CVaR}_{\alpha}[\cdot]$
$\boldsymbol{\pi}:\binom{|V|}{k}$-dim. vector s.t. $\|\boldsymbol{\pi}\|_{1}=1$
E.g., $k=1, \pi_{a}=\pi_{b}=0.5$

$u v$ lives w.p. $p_{u v}$
$2^{|E|}$ outcomes

Dist. of $\langle\boldsymbol{\pi}, \mathbf{X}\rangle=\pi_{a} X_{a}+\pi_{b} X_{b}$
$\mathbf{E}\left[\pi_{a} X_{a}+\pi_{b} X_{b}\right]=2.25$
$\operatorname{CVaR}_{0.25}\left[\pi_{a} X_{a}+\pi_{b} X_{b}\right]=\underline{1.25}$ worst 0.25-fraction 11

Formulation
k-vertex portfolio, $\mathbf{E}[\cdot]$ and $\mathrm{CVaR}_{\alpha}[\cdot]$
$\boldsymbol{\pi}:\binom{|V|}{k}$-dim. vector st. $\|\pi\|_{1}=1$
E.g., $k=1, \pi_{a}=\pi_{b}=0.5$

1	1.5	1	2
1.5	2.5	1.5	3.5
1.5	2	2	3
2	2.5	2.5	3.5

Dist. of $\langle\boldsymbol{\pi}, \mathbf{X}\rangle=\pi_{a} X_{a}+\pi_{b} X_{b}$
$\mathbf{E}\left[\pi_{a} X_{a}+\pi_{b} X_{b}\right]=2.25$
$\mathrm{CVaR}_{0.25}\left[\pi_{a} X_{a}+\pi_{b} X_{b}\right]=\underline{1.25}$ worst 0.25 -fraction 12

Formulation

Our problem definition

Input : $G=(V, E)$, p, integer k, significance level α Output : k-vertex portfolio $\boldsymbol{\pi}$

$$
\begin{aligned}
& \max _{\boldsymbol{\pi}} \operatorname{CVAR}_{\alpha}[\langle\boldsymbol{\pi}, \mathbf{X}\rangle] \\
& \sum_{A:|A|=k} \pi_{A} X_{A} \\
& \text { \# vertices reachable from } A \\
& \text { in the random graph }
\end{aligned}
$$

© $\boldsymbol{\pi} \& \mathbf{X}$ are $\binom{|V|}{k}$-dimensional Existing methods cannot be applied

Our algorithm
Main idea

Standard approximation
CVaR optimization \rightarrow BIG linear programming

Multiplicative weights algorithm [Arora-Hazan-Kale. '12]
Used in optimization, machine learning, game theory, ...
E.g., our group's application [Hatano-Yoshida. AAAI'15]

Requires an oracle for
a convex combination of the constraints \uparrow
Greedy strategy solves approximately!

Our algorithm

Standard approximation as a first step

$\max \operatorname{CVaR}_{\alpha}[\langle\boldsymbol{\pi}, \mathbf{X}\rangle]$
 π

Write CVaR as an optimization problem [Rockafellar-Uryasev. J. Risk'00]
Sampling $\mathbf{X}^{1}, \ldots, \mathbf{X}^{s}$ from the dist. of \mathbf{X}

$$
\max _{\pi, \tau} \tau-\frac{1}{\alpha S} \sum_{1 \leq i \leq s} \max \left\{\tau-\left\langle\boldsymbol{\pi}, \mathbf{X}^{i}\right\rangle, 0\right\}
$$

Solve the feasibility problem " $\square \geq r$?" to perform the bisection search on γ

Our algorithm
Difficulty of checking " $\square \geq \gamma ?^{\text {" }}$
$" \square \geq \gamma ? "=$ Feasibility of a BIG linear programming

$$
\mathbf{x}=\left[\begin{array}{l}
\tau \\
\mathbf{y} \\
\boldsymbol{\pi}
\end{array}\right] \begin{aligned}
& \text { auxiliary variable required for expressing CVaR } \\
& \text { auxiliary variables for removing max functions } \\
& k \text {-vertex portfolio }
\end{aligned}
$$

$\exists ? \mathbf{x} \in \mathbf{P}_{\gamma} \quad \mathbf{A x} \geq \mathbf{b}$

$\ell 2$
\# variables $\approx\binom{|V|}{k}$
\# constraints $=s$
" Multiple submodular functions exceed a threshold simultaneously "

HARD to satisfy!!

Our algorithm
Our solution for checking the BIG LP \square

Multiplicative weights algorithm [Arora-Hazan-Kale. '12]
(1) Solve the convex combination for $\mathbf{p}=\mathbf{p}_{1}, \ldots, \mathbf{p}_{T}$
(2) The average solution \approx A solution of \square

$$
\exists ? \mathbf{x} \in \mathbf{P}_{\gamma} \quad\langle\mathbf{p}, \mathbf{A x}\rangle \geq\langle\mathbf{p}, \mathbf{b}\rangle
$$

U
Still looks difficult, but ... "A single submodular function exceeds a threshold"

We can assume $\boldsymbol{\pi}$ is sparse \rightarrow Greedy works!!
Constant additive error $\left(-e^{-1}\right)$ in poly-time

Our algorithm

Summary : Time \& Quality

Exact CVaR optimization

2) Error is bounded

Empirical CVaR optimization

Bisection search

BIG linear programming
Multiplicative weights!
Convex combination
$\widetilde{\mathrm{O}}\left(\epsilon^{-6} k^{2}|V||E|\right)$ time $\widetilde{\mathrm{O}}(f)=\mathrm{O}\left(f \log ^{c} f\right)$
$\operatorname{CVaR}_{\alpha}[\langle\boldsymbol{\pi}, \mathbf{X}\rangle] \geq \max _{\pi^{*}} \operatorname{CVaR}_{\alpha}\left[\left\langle\pi^{*}, \mathbf{X}\right\rangle\right]-|V| \mathrm{e}^{-1}-|V| \epsilon$ optimum value additive error

Experiments

Settings

- Test data (see our paper for results on other data)

Physicians friend network $(|V|=117 \&|E|=542$)
from [Koblenz Network Collection]
$p_{u v}=(\text { out-degree of } u)^{-1}$

- Parameter : $\epsilon=0.4$

- Baselines : produce a single vertex set

Greedy a standard greedy algorithm for influence maximization
Degree select k vertices in degree decreasing order
Random select k vertices uniformly at random

- Environment : Intel Xeon E5-2670 2.60GHz CPU, 512GB RAM

Experiments

Results for $k=10 \& \alpha=0.01$

	CVaR at α	Expectation	Runtime
This work	$\underline{\mathbf{2 3 . 6}}$	Comparable $\frac{\mathbf{3 7 . 7}}{\mathbf{3 8 . 2}}$	157.2 s
Greedy	16.9	0.1 s	
Degree	14.2	30.8	0.2 ms
Random	15.1	31.0	0.2 ms

$\boldsymbol{\pi}$ is extremely sparse!!
(\# non-zeros in $\boldsymbol{\pi}$) $=42$
dim. of $\pi=\binom{|V|}{10} \approx 10^{14}$

A	π_{A}
$25,42,67,81,85,94,103,106,111,112$	$3 / 47$
$7,20,21,48,75,98,104,111,112,113$	$2 / 47$
$0,29,43,52,92,97,107,108,113,116$	$2 / 47$
$25,38,69,71,81,103,105,110,112,116$	$2 / 47$
\vdots	\vdots

Conclusion

Succeed to obtain a low-risk strategy by a portfolio optimization approach

Future study I : Speed-up
$\widetilde{\mathrm{O}}\left(\epsilon^{-6} k^{2}|V||E|\right)$ time is still expensive Can we solve the BIG LP in a different way?
Future study II: Exact computation of CVaR
Is it possible to extend [Maehara-Suzuki-Ishihata. Www'17]?
Future studyIII: Other risk measures
Value at Risk, Lower partial moment, ...

