Efficient PageRank Tracking in Evolving Networks

Naoto Ohsaka (UTokyo)
Takanori Maehara (Shizuoka University)
Ken-ichi Kawarabayashi (NII)

ERATO Kawarabayashi Large Graph Project
Background

Personalized PageRank Tracking

Applications

Search engine [Brin-Page. '98]
Spam detection [Chung-Toyoda-Kitsuregawa. ’09, ’10]

Growth of real networks

<table>
<thead>
<tr>
<th></th>
<th>Size</th>
<th>Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWW</td>
<td>60T</td>
<td>600K pages / s</td>
</tr>
<tr>
<td>Twitter</td>
<td>300M</td>
<td>5K tweets / s</td>
</tr>
<tr>
<td>Google+</td>
<td>700M</td>
<td>+19 users / s</td>
</tr>
</tbody>
</table>
Background

Existing Work for PageRank Tracking

<table>
<thead>
<tr>
<th>Method</th>
<th>m random edge insertions</th>
<th>Scalability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggregation/Disaggregation</td>
<td>$O(m</td>
<td>S</td>
</tr>
<tr>
<td>[Chien et al. ’04]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monte-Carlo</td>
<td>$O(m + \log m /\epsilon^2)$</td>
<td>68M edges</td>
</tr>
<tr>
<td>[Bahmani et al. ’10]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power method</td>
<td>$O(m^2 \log 1/\epsilon)$</td>
<td>11M edges</td>
</tr>
<tr>
<td>naive method</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Scalability**
 - Update time < 0.1s
 - Error $\approx 10^{-9}$
Our Contribution

Propose a **simple, efficient, & accurate** method for Personalized PageRank tracking in evolving networks

<table>
<thead>
<tr>
<th></th>
<th>m random edge insertions</th>
<th>Scalability</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>Ave. \downarrow Max. out-deg $O(m + \Delta \log m / \epsilon)$</td>
<td>$3,700M$ edges</td>
</tr>
<tr>
<td>Aggregation/Disaggregation [Chien et al. '04]</td>
<td>$O(m</td>
<td>S</td>
</tr>
<tr>
<td>Monte-Carlo [Bahmani et al. '10]</td>
<td>$O(m + \log m / \epsilon^2)$</td>
<td>$68M$ edges</td>
</tr>
<tr>
<td>Power method naive method</td>
<td>$O(m^2 \log 1/\epsilon)$</td>
<td>$11M$ edges</td>
</tr>
</tbody>
</table>

Scalability
- Update time < 0.1s
- Error $\approx 10^{-9}$
Preliminaries

Definition of Personalized PageRank

- Linear equation
 A solution x of
 $$x = \alpha Px + (1 - \alpha)b$$
 - Preference vector
 - Transition matrix
 - Decay factor = 0.85

- Random walk modeling web browsing
 - Moves to a random out-neighbor w.p. α
 - Jumps to a random vertex w.p. $1 - \alpha$
 (biased by b)
Preliminaries

Computing PageRank in Static Graphs

- Solving eq. \(x = \alpha Px + (1 - \alpha)b \)
 - Power method \(x^{(v)} = \alpha Px^{(v-1)} + (1 - \alpha)b \)
 - Gauss-Seidel [Del Corso-Gullí-Romani. Internet Math.'05]
 - LU/QR factorization [Fujiwara-Nakatsuji-Onizuka-Kitsuregawa. VLDB’12]
 - Krylov subspace method [Maehara-Akiba-Iwata-Kawarabayashi. VLDB’14]

- Estimating the frequency \(x_v \) of visiting \(v \)
 - Monte-Carlo simulation
Preliminaries

Tracking PageRank in Evolving Graphs

- **Aggregation/disaggregation**

 [Chien-Dwork-Kumar-Simon-Sivakumar. Internet Math.'04]

 Apply the power method to a subgraph

- **Monte-Carlo**

 [Bahmani-Chowdhury. VLDB’10]

 Maintain & update random-walk segments

\[\Omega \left(\frac{1}{\epsilon^2} \right) \] Too many
Proposed Method

Problem Setting

Given \(G(0), \alpha, b \) at time 0

\[
G(0) = (V, E(0))
\]

\[
G(t - 1) = (V, E(t - 1))
\]

\[
G(t) = (V, E(t))
\]

\(G(0) \) to \(G(t) \) represents the evolution of the graph from time 0 to time \(t \).

Problem at time 0

Compute approx. PPR \(x(0) \) of \(G(0) \)

\[\| x(0) - x^*(0) \|_\infty < \epsilon \]

Problem at time \(t \)

Compute approx. PPR \(x(t) \) of \(G(t) \)

Given at time \(t \):

Edges inserted to/deleted from

\[
\square \quad \text{Edges inserted to/deleted from}
\]
Proposed Method

The Idea

Solving eq. \(x(t) = \alpha P(t)x(t) + (1 - \alpha)b \)

1. \(x(t - 1) \) is a **GOOD** initial solution for \(x(t) \)
2. Improving approximate solution **locally**

- We use the **Gauss-Southwell** method 🤪 [Southwell. ‘40, ’46]

 a.k.a. Bookmark coloring algorithm [Berkhin. Internet Math.’06]

 Local algorithm
 [Spielman-Teng. SIAM J. Comput.’13] [Andersen-Chung-Lang. FOCS’06]
Proposed Method

Gauss-Southwell Method [Southwell. ’40,’46]

- **νth solution** $x^{(\nu)}$
- **νth residual** $r^{(\nu)} = (1 - \alpha)b - (I - \alpha P)x^{(\nu)}$

Goal: $r^{(\nu)} \rightarrow 0$

$v = 1,2,3, ...$

$i \leftarrow$ a vertex with largest $|r_i^{(\nu-1)}|$

If $|r_i^{(\nu-1)}| < \epsilon$ terminate

Update $x^{(\nu-1)}$ & $r^{(\nu-1)}$ locally so that $r_i^{(\nu)} = 0$

iterations

Stops within $\|r^{(0)}\| / (1 - \alpha)\epsilon$ iter.

$\|r^{(\nu)}\| \leq \|r^{(\nu-1)}\| - (1 - \alpha)\epsilon$

Accuracy

$\|x^* - x^{(\nu)}\|_\infty \leq \frac{\epsilon}{1 - \alpha}$

$\sqrt{r_i^{(\nu)} < \epsilon}$
At time t:

\[
x(t)^{(0)} = x(t - 1) \\
r(t)^{(0)} = r(t - 1) + \alpha(P(t) - P(t - 1))x(t - 1)
\]

Apply the Gauss-Southwell method
At time t:
\[
x(t)^{(0)} = x(t - 1)
\]
\[
r(t)^{(0)} = r(t - 1) + \alpha (P(t) - P(t - 1)) x(t - 1)
\]

Apply the Gauss-Southwell method

Increase of $\|r\|_1$

Computation time of $\boxed{\text{Max. out-deg \uparrow}} = \mathcal{O}(\Delta \times \#\text{iters.})$

depends on $\| \|_1$ How small?
Consider any change including full construction

\[G(t - 1) \rightarrow G(t) \]

Increase of \[\|r\|_1 \leq 2\alpha \]

Same as static computation
Proposed Method

Performance Analysis: Random Edge Insertion

A single-edge is randomly inserted for each time

\[G(0) \xrightarrow{\text{Insert an edge}} G(1) \xrightarrow{\text{...}} G(m) \]

\[E(0) = \emptyset \]

Lemma 3 in [Bahmani-Chowdhury. VLDB’10]

Monte-Carlo

[Bahmani-Chowdhury. VLDB’10]

\[\mathbb{E}[^{\# \text{ updated seg.}}] = O(R \log m) \]

\[R = \Omega(1/\varepsilon^2) \] is total # seg.

Our method

\[\mathbb{E}[^{\text{increase of } \|r\|_1}] \leq 2\alpha/t \]
Proposed Method

Performance Analysis: Results

Our result for random edge insertion (Prop. 6 in the paper)

If m edges are randomly and sequentially inserted,
expected total $\# \text{iter.}$ is $\Theta(\log m / \epsilon)$

\Rightarrow expected total time is $\Theta(m + \Delta \log m / \epsilon)$

Our result for any change (Prop. 5 in the paper)

$\# \text{iter.}$ for any change is amortized $\Theta(1/\epsilon)$

\Rightarrow Time is amortized $\Theta(\Delta/\epsilon)$
Experiments

Setting: Single-edge Insertion

- Parameter settings
 - $\alpha = 0.85$
 - b has 100 non-zero elements
 - $\epsilon = 10^{-9}$

$G(0)$ \rightarrow $G(1)$ \rightarrow \ldots \rightarrow $G(10^5)$

- Except the last 100,000 edges
- Add an edge chronologically or randomly
- The whole graph
Experiments

Efficiency Comparison: Time for an Edge Insertion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$</td>
<td>V</td>
<td>=1M$</td>
<td>$</td>
</tr>
<tr>
<td></td>
<td>$</td>
<td>E</td>
<td>=5M$</td>
<td>$</td>
</tr>
<tr>
<td>This work</td>
<td>7 μs</td>
<td>77 μs</td>
<td>29,383 μs</td>
<td>2 μs</td>
</tr>
<tr>
<td>Aggregation/Disaggregation [Chien et al. ’04]</td>
<td>320 μs</td>
<td>40,336 μs</td>
<td>>100,000 μs</td>
<td>>100,000 μs</td>
</tr>
<tr>
<td>Monte-Carlo [Bahmani et al. ’10]</td>
<td>444 μs</td>
<td>9,196 μs</td>
<td>>100,000 μs</td>
<td>>100,000 μs</td>
</tr>
<tr>
<td>Warm start power method</td>
<td>80,994 μs</td>
<td>>100,000 μs</td>
<td>>100,000 μs</td>
<td>>100,000 μs</td>
</tr>
<tr>
<td>From scratch power method</td>
<td>>100,000 μs</td>
<td>>100,000 μs</td>
<td>>100,000 μs</td>
<td>>100,000 μs</td>
</tr>
</tbody>
</table>

Environment: Intel Xeon E5-2690 2.90GHz CPU with 256GB memory
Experiments

Accuracy Comparison: Transition of Ave. L_1 Error

- This work
- Aggregation/Disaggregation [Chien et al.’04]
- Monte-Carlo [Bahmani et al.’10]
- Warm start (power method)
- From scratch (power method)

Comparable ($\sim 10^{-9}$) to naive methods

Environment: Intel Xeon E5-2690 2.90GHz CPU with 256GB memory
Experiments

Evaluation: Time & #Iter. for a Single-edge Insertion

| Dataset | |V| | |E| | Max. Out-deg \(\Delta\) | Ave. Time | Ave. #Iter. |
|------------------|----------------|-------|----------------|-------------|--------------|
| wiki-Talk [SNAP] | 2M | 5M | 100,022 | 589.6 μs | 2.3 |
| web-Google [SNAP]| 1M | 5M | 3,444 | 7.2 μs | 22.6 |
| as-Skitter [SNAP]| 2M | 11M | 35,387 | 288.4 μs | 0.8 |
| FlickrTime [KONECT] | 2M | 33M | 26,367 | 95.3 μs | 16.2 |
| WikipediaTime [KONECT] | 2M | 40M | 6,975 | 76.8 μs | 46.0 |
| soc-LiveJournal1 [SNAP] | 5M | 68M | 20,292 | 17.9 μs | 7.6 |
| twitter-2010 [LAW] | 42M | 1,500M | 2,997,469 | 29,382.8 μs | 0.7 |
| uk-2007-05 [LAW] | 105M | 3,700M | 15,402 | 2.3 μs | 0.0 |

Environment: Intel Xeon E5-2690 2.90GHz CPU with 256GB memory
Experiments

Evaluation: Relationship between $|E|$ & #Iter.

We plotted for 15 datasets

Ave. #iter. for edge insertion

Matches our theoretical result

Environment: Intel Xeon E5-2690 2.90GHz CPU with 256GB memory
Experiments

Evaluation: Time & #Iter. for a Single-edge Insertion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>wiki-Talk</td>
<td>[SNAP]</td>
<td></td>
<td></td>
<td></td>
<td>100,022</td>
<td>589.6 μs</td>
</tr>
<tr>
<td>web-Google</td>
<td>[SNAP]</td>
<td></td>
<td></td>
<td></td>
<td>3,444</td>
<td>7.2 μs</td>
</tr>
<tr>
<td>as-Skitter</td>
<td>[SNAP]</td>
<td></td>
<td></td>
<td></td>
<td>35,387</td>
<td>288.4 μs</td>
</tr>
<tr>
<td>FlickrTime</td>
<td>[KONECT]</td>
<td></td>
<td></td>
<td></td>
<td>26,367</td>
<td>95.3 μs</td>
</tr>
<tr>
<td>WikipediaTime</td>
<td>[KONECT]</td>
<td></td>
<td></td>
<td></td>
<td>6,975</td>
<td>76.8 μs</td>
</tr>
<tr>
<td>soc-LiveJournal1</td>
<td>[SNAP]</td>
<td></td>
<td></td>
<td></td>
<td>20,292</td>
<td>17.9 μs</td>
</tr>
<tr>
<td>twitter-2010</td>
<td>[LAW]</td>
<td></td>
<td></td>
<td></td>
<td>2,997,469</td>
<td>29,382.8 μs</td>
</tr>
<tr>
<td>uk-2007-05</td>
<td>[LAW]</td>
<td></td>
<td></td>
<td></td>
<td>15,402</td>
<td>2.3 μs</td>
</tr>
</tbody>
</table>

Environment: Intel Xeon E5-2690 2.90GHz CPU with 256GB memory
Experiments

Discussion: What is the Difference?

- twitter-2010 \((u, v)\) says “\(v\) follows \(u\)”
- uk-2007-05 \((u, v)\) says “\(u\) links to \(v\)”

\[\text{# vertices s.t. out-deg} \geq k \]

Celebrities cause the performance degradation!!
Summary

Proposed an efficient & accurate method for **Personalized PageRank tracking** in evolving networks

Theoretically

Ave. $O(m + \Delta \log m / \epsilon)$ for m edge insertions

Experimentally

Scales to a graph w/ 3.7B edges

Future Work

- Further Speed-up based on our observation
- Handle dangling nodes