2016/9/22 ECML-PKDD 2016

Maximizing Time-decaying Influence in Social Networks

Naoto Ohsaka (UTokyo)

Yutaro Yamaguchi (Osaka Univ.) Naonori Kakimura (UTokyo) Ken-ichi Kawarabayashi (NII) ERATO Kawarabayashi Large Graph Project

Influence maximization [Kempe-Kleinberg-Tardos. *KDD'03*]

Given

- Social graph G = (V, E)
- ► Diffusion model \mathcal{M}
- ► Integer k

Viral marketing application [Domingos-Richardson. *KDD*'01]

Goal

► maximize $\sigma_{\mathcal{M}}(S)$ (|S| = k) $\sigma_{\mathcal{M}}(S) \coloneqq \mathbf{E}[$ size of cascade initiated by S under $\mathcal{M}]$

Formulation by [Kempe-Kleinberg-Tardos. *KDD'03*]

Used classical diffusion models

independent cascade [Goldenberg-Libai-Muller. *Market. Lett.*'01] linear threshold [Granovetter. *Am. J. Sociol.*'78]

+ Tractable $\forall X \subseteq Y, v \notin Y$ $\sigma(X \cup v) - \sigma(X) \ge \sigma(Y \cup v) - \sigma(Y)$ Monotonicity & submodularity of $\sigma(\cdot)$ [Kempe-Kleinberg-Tardos. *KDD'03*] Near-linear time approx. algorithms [Borgs-Brautbar-Chayes-Lucier. SODA'14] [Tang-Shi-Xiao. SIGMOD'15]

Too simple

No time-decay effects, no time-delay propagation

Our aspect : Time-decay effects

The power of influence (rumor) depends on arrival time decreases over time

Time-delay propagations have been studied [Saito-Kimura-Ohara-Motoda. *ACML'09*] [Goyal-Bonchi-Lakshmanan. *WSDM'10*] [Saito-Kimura-Ohara-Motoda. *PKDD'10*] [Rodriguez-Balduzzi-Schölkopf. *ICML'11*] [Chen-Lu-Zhang. *AAAI'12*] [Liu-Cong-Xu-Zeng. *ICDM'12*]

Time-decay effects have not much ...

[Cui-Yang-Homan. CIKM'14] No guarantee for influence maximization

Our question

What if incorporate time-decay effects?

Monotonicity? Submodularity? Scalable algorithm?

Our contribution

Generalize independent cascade & linear threshold with **Time-decay effects** & **Time-delay propagation** <u>Non-increasing</u> probability Arbitrary length distribution **Lessential**

Characterization

Diffusion process of TV-IC

Reachability on a random shrinking dynamic graph

- Monotonicity & submodularity of $\sigma_{TVIC}(\cdot)$
- ► Scalable and accurate greedy algorithms based on reverse influence set [Tang-Shi-Xiao. *SIGMOD'15*] $O\left(k\left(|E| + \frac{|E|^2}{|V|}\right)\frac{\log^2|V|}{\epsilon^2}\right)$ time & $(1 - e^{-1} - \epsilon)$ -approx.

Time-varying independent cascade (TV-IC) model

- G = (V, E)Social graph p_{uv} Non-increasing probability function f_{uv} Arbitrary length distribution
- **0.** *u* became **active** at t_u **1.** Sample a delay δ_{uv} from f_{uv}

Objective function

 $\sigma_{\text{TVIC}}(S) \coloneqq \mathbf{E}[\# \text{ active vertices initiated by } S]$

Time-varying independent cascade (TV-IC) model

- G = (V, E)Social graph p_{uv} Non-increasing probability function f_{uv} Arbitrary length distribution
- **0.** *u* became **active** at t_u **1.** Sample a delay δ_{uv} from f_{uv} **2A.** Success w.p. $p_{uv}(t_u + \delta_{uv})$ *v* becomes **active** at $t_u + \delta_{uv}$

Objective function $\sigma_{\text{TVIC}}(S) \coloneqq \mathbf{E}[\# \text{ active vertices initiated by } S]$

Time-varying independent cascade (TV-IC) model

G = (V, E)Social graph p_{uv} Non-increasing probability function f_{uv} Arbitrary length distribution

0. *u* became **active** at t_u **1.** Sample a delay δ_{uv} from f_{uv} **2B.** Failure w.p. $1 - p_{uv}(t_u + \delta_{uv})$ *v* remains **inactive**

Objective function

 $\sigma_{\text{TVIC}}(S) \coloneqq \mathbf{E}[\# \text{ active vertices initiated by } S]$

Characterization of the IC model [Kempe-Kleinberg-Tardos. *KDD'03*]

No need to consider time

Characterization of the TV-IC model

S influences *z* in the TV-IC process

Dynamic ... G^t changes over time

 $\therefore p_{uv}$ <u>changes</u> over time

Shrinking ...

G^t has only edge deletions

 $\therefore p_{uv}$ is <u>non-increasing</u>

S can reach *z* in a random <u>shrinking</u> <u>dynamic</u> graph *G*^t

Monotonicity & submodularity of $\sigma_{\text{TVIC}}(\cdot)$

S influences z in the TV-IC process

S can reach *z* in a random <u>shrinking</u> <u>dynamic</u> graph *G*^t

 $\sigma_{\text{TVIC}}(S) = \mathbf{E}_{G^{t}}[\# \text{ vertices reachable from } S \text{ in } G^{t}]$

Our results : Monotone & submodular <u>Shrinking</u> is a MUST

→→ Greedy algorithm is $(1 - e^{-1})$ -approx. [Nemhauser-Wolsey-Fisher. *Math. Program.*'78]

Efficient approximation of $\sigma_{\text{TVIC}}(\cdot)$

Greedy algorithm requires estimations of $\sigma_{\mathrm{TVIC}}(\cdot)$

Reverse influence set [Tang-Shi-Xiao. SIGMOD'15]

 $R_i \coloneqq \{\text{vertices that would have influenced } z_i\}$

BFS-like alg. for the IC [Borgs-Brautbar-Chayes-Lucier. SODA'14] Dijkstra-like alg. for the continuous IC [Tang-Shi-Xiao. SIGMOD'15] Cannot be applied to our model

Naive reverse influence set generation under the TV-IC model

Check each vertex separately

$$v \in R_i$$
 \Leftrightarrow v can reach z_i in a random shrinking dynamic graph

 $\twoheadrightarrow \Omega(|V| \cdot |E|)$ time

Efficient reverse influence set generation under the TV-IC model

Computing
$$\tau[v]$$

" v must pass through (v, w) for some w to reach z_i "
 $\tau[v] = \max_{(v,w)\in E} \min\{\tau[w] - \delta_{vw}, p_{vw}^{-1}(x_{vw})\}$
Dynamic programming yields
 $+\infty = \tau[z_i] \ge \tau[v_1] \ge \cdots \ge \tau[v_r] \ge 0$

Performance analysis

Lemma 2 Correctness

Lemma 3 Running time = $O\left(\frac{|E| \cdot OPT}{|V|} \log |V|\right)$ in exp.

Theorem 4

Our reverse influence set generation method + *IMM* (Influence Maximization via Martingales) framework [Tang-Shi-Xiao. *SIGMOD*'15]

 $(1 - e^{-1} - \epsilon)$ -approx. w.h.p.

 $\mathcal{O}\left(k\left(|E| + \frac{|E|^2}{|V|}\right)\frac{\log^2|V|}{\epsilon^2}\right)$ expected time

 $\frac{|E|}{|V|}$ is small for real graphs

Experiments: Setting

Comparative algorithms

+ This work

Degree

[Tang-Shi-Xiao. SIGMOD'15]

LazyGreedy [Minoux. *Optim. Tech.*'78] Efficient algorithms under different models

Accurately estimate $\sigma_{\text{TVIC}}(\cdot)$ by simulations

Simple baseline

 $\blacktriangleright p_{uv}(t) = (\operatorname{in-deg}(v) \cdot c \cdot t)^{-1}$ ► $f_{uv}(\cdot) =$ (Weibull distribution) [Lawless. '02]

Experiments: Solution quality

Dataset : Stanford Large Network Dataset Collection. http://snap.stanford.edu/data Environment : Intel Xeon E5540 2.53 GHz CPU + 48 GB memory & g++v4.8.2 (-O2)

Experiments: Scalability

Running time for selecting seed sets of size k for each method

Dataset : Stanford Large Network Dataset Collection. http://snap.stanford.edu/data Environment : Intel Xeon E5540 2.53 GHz CPU + 48 GB memory & g++v4.8.2 (-O2)

Summary & future work

