Fast and Accurate Influence Maximization on Large Networks with Pruned Monte-Carlo Simulations

Naoto Ohsaka (UTokyo)

Takuya Akiba (UTokyo)

Yuichi Yoshida (NII & PFI)

Ken-ichi Kawarabayashi (NII)

JST, ERATO, Kawarabayashi Large Graph Project

Influence Maximization

[Kempe, Kleinberg, Tardos. KDD'03]

- Input
 - Directed graph G = (V, E)
 - Edge probability $p_e \ (e \in E)$
 - Size of seed set k
- Problem
 - maximize $\sigma(S)$ $(|S| \le k)$
 - $\sigma(\cdot)$: the spread of influence

Motivation

mathematically formalizing

- Viral (word-of-mouth) Marketing
 [Domingos, Richardson, KDD'01], [Richardson, Domingos, KDD'02]
 - Q. How to find a small group of influential individuals?

Independent Cascade Model

[Goldenberg, Libai, Muller. Marketing Letters'01]

Each vertex has 2 states (inactive / active)

Diffusion Process

- **0.** Activate vertices in $S \subseteq V$ called **seed set**
- 1. Active vertex u activates inactive vertex v with probability p_{uv} (single trial)
- 2. Repeat 1 while new activations occur

Example of Independent Cascade Model

- Influence spread $\sigma(S)$
 - Expected number of active vertices given a seed set S

Previous Results

Hardness

Influence Maximization is

NP-hard

[Kempe, Kleinberg, Tardos. KDD'03]

Exact Computation of $\sigma(\cdot)$ is

#P-hard

[Chen, Wang, Wang. KDD'10]

Original Greedy Approach

Greedy Algorithm

[Kempe, Kleinberg, Tardos. KDD'03]

Approx. ratio \approx **63**%

Monte-Carlo Simulations
Good approximation

Original Greedy Approach

Greedy Algorithm [Kempe, Kleinberg, Tardos. KDD'03]

$$S \leftarrow \emptyset$$

while $|S| < k$ **do**
 $t \leftarrow \arg\max_{v \in V} \sigma(S \cup \{v\}) - \sigma(S)$
 $S \leftarrow S \cup \{t\}$

Due to **submodularity** of $\sigma(\cdot)$

$$\sigma(S) \ge \left(1 - \frac{1}{e}\right) \text{OPT} \ge 0.63 \text{ OPT}$$
[Nemhauser, Wolsey, Fisher.

Mathematical Programming'78]

- Monte-Carlo Simulations (1 $\pm \varepsilon$ approximation) [Kempe, Kleinberg, Tardos. KDD'03]
 - Simulating diffusion process repeatedly
 - Averaging # of active vertices

Produces near-optimal
$$\left(1 - \frac{1}{e} - \varepsilon'\right)$$
 solutions ₆

Issue: Original Greedy Approach Suffers from Scalability

Greedy Algorithm

of Evaluating $\sigma(\cdot)$:

nk

Monte-Carlo Simulations

Computation Time of $\sigma(\cdot)$:

O(mR)

Total Time: O(knmR) $(R \approx 10,000)$

$$n = |V| > 10^6$$

$$m = |E| > 10^7$$

k: # of seeds

 $R = \text{poly}(\varepsilon^{-1})$: # of simulations

Previous Methods for Influence Maximization

	Low Quality	High Quality
Slow	Simulation-based	Greedy Approach [Kempe, Kleinberg, Tardos. KDD'03] CELF [Leskovec, Krause, Guestrin, Faloutsos, VanBriesen, Glance. KDD'07] StaticGreedyDU [Cheng, Shen, Huang, Zhang, Cheng. CIKM'13]
Fast	DegreeDiscount [Chen, Wang, Yang. KDD'09] PMIA [Chen, Wang, Wang. KDD'10] SAEDV [Jiang, Song, Cong, Wang, Si, Xie. AAAI'11] IRIE [Jung, Heo, Chen. ICDM'12]	CHALLENGE leuristic-based

Our Contribution

- Propose a simulation-based fast algorithm
 - Fast
 - Comparable to heuristics
 - Can handle graphs with 60M edges in 20 min.
 - Accurate
 - Has a theoretical guarantee
 - Better than heuristics

Outline of Proposed Method

Preprocessing: Generating random graphs

1 Coin Flip Technique

Greedy Strategy

$$S \leftarrow \emptyset$$
while $|S| < k$ do
$$t \leftarrow \arg\max_{v \in V} \frac{\sigma(S \cup \{v\}) - \sigma(S)}{\int \text{Our Speed-up Techniques}}$$

Preprocessing: **Generating Random Graphs**

Coin Flip Technique

[Kempe, Kleinberg, Tardos. KDD'03]

Computing influence spread $\sigma(S)$

Counting # of vertices reachable

from S on random graph

Edge e lives w.p. p_e

live edge: success

blocked edge: failure

Input graph G

R random graphs

How to Approximate $\sigma(S)$

$$\sigma(S) \approx \frac{1}{R} \sum_{i=1}^{R} \sigma_{G_i}(S)$$

 $\sigma_{G_i}(S) = \#$ of vertices reachable from S on G_i

R = 200						
v	$\sigma_{G_1}(\{v\})$	•••	$\sigma_{G_R}(\{v\})$	$\sigma(\{v\})$		
A	3	•••	2	2.4		
B	4	•••	2	2.8		
<i>C</i>	2	•••	2	1.6		
D	1	•••	1	1		
E	1	•••	1	1		
F	3	•••	2	2.2		

CHALLENGE

Computing this table as **fast** as possible

Proposed Speed-up Techniques

(we apply each random graph)

- 1. Pruned BFS for reachability tests (on random graphs) (We will focus on this)
 [Akiba, Iwata, Yoshida. SIGMOD'13]
 [Yano, Akiba, Iwata, Yoshida. CIKM'13]
 [Akiba, Iwata, Kawarabayashi, Kawata. ALENEX'14]

 our paradigm
- 2. Reducing unnecessary influence recomputations
- 3. Reducing # of random graphs by Sample Average Approximation approach [Kimura, Saito, Nakano. AAAI'07], [Cheng, Shen, Huang, Zhang, Cheng. CIKM'13] [Sheldon et al., UAI'10]
 - We provide nice theoretical bound

These techniques do **NOT** affect the estimation of $\sigma(\cdot)$

Pruned BFS

- Idea: Most BFSs are redundant
- Preprocessing: Compute ancestors and descendants of vertex H with max. deg.
- Pruning (BFS from v): If v is ancestor of H, we ignore descendants of H

Is Pruned BFS Really Effective?

For Path Graphs

Pruned BFS is **NOT** effective $\Theta(|V|^2)$

But, for Social Networks

Pruned BFS works effectively

since there is a hub (or giant component)

Effect of Pruned BFS on Social Networks

(LiveJournal dataset, |V|=4.8M, |E|=69M, $p_e=0.1 \forall e$)

of vertices visited during Naive & Pruned BFSs

- Average # of visited vertices (from each vertex):
 - **400,000** (Naive BFS) ⇒ **6** (Pruned BFS)

Experiments: Influence Spread

We set $p_e = P$ for every edge. Size of seed set = 50

Dataset	Ours (this work)	StaticGreedy DU [Cheng+'13]	IR [Jung		PMIA [Chen+'10]	SAEDV [Jiang+'11	
$ \begin{array}{c} DBLP \\ (P = 0.01) \end{array} $	332	330		323	317	7	7 6
$ \begin{array}{c} DBLP \\ (P = 0.1) \end{array} $	100076		99	9533	99505	9957	<u>'</u> 9
LiveJournal $(P = 0.01)$	47527		41	1906	40544	2606	6
LiveJournal $(P = 0.1)$	1686629			2436		168224	-2
· · · · · · · · · · · · · · · · · · ·		- significan	significantly		atacot	17 1	<u>.</u>

better

Ours & StaticGreedyDU give the best results

Dataset	V	E
DBLP	655K	2.0M
Live Journal	4.8M	69M

Experiments: Running Time [s]

We set $p_e = P$ for every edge. Size of seed set = 50

Dataset	Ours (this work)	StaticGreedy DU [Cheng+'13]	IRIE [Jung+'12]	PMIA [Chen+'10]	SAEDV [Jiang+'11]
$ \begin{array}{c} DBLP \\ (P = 0.01) \end{array} $	27	117	77	4	388
DBLP (<i>P</i> = 0 . 1)	52	ООМ	77	289	388
LiveJournal $(P = 0.01)$	327	ООМ	1622	500	1275
LiveJournal $(P = 0.1)$	663	ООМ	1635	OOM	1294

- As fast as heuristics
- Robust against value of P

Dataset	V	E
DBLP	655K	2.0M
Live Journal	4.8M	69M

Future Work

Applying other models

Parallelization

Analysis of Pruned BFS on social networks

Supplement

Running Time [s] for Each Variant of Our Method

Dataset	Pruned BFS + Technique 2	Naive BFS + Technique 2	Pruned BFS	Naive BFS
$\begin{array}{c} DBLP \\ (P=0.01) \end{array}$	27	26	149	158
DBLP (<i>P</i> = 0 . 1)	54	3036	306	3275
LiveJournal $(P = 0.01)$	327	1934	2176	3820
LiveJournal $(P = 0.1)$	634	272518	2426	272973

Construct a Vertex-weighted DAG from a Random Graph

Strongly Connected Component Decomposition

Other Models for Information Diffusion

- Linear Threshold Model [Kempe, Kleinberg, Tardos. KDD'03]
 - Inactive vertex v becomes active if

$$\sum q_{uv} \ge \theta_v$$

u: active neighbor of v

- θ_{v} : Threshold chosen from [0,1] uniformly at random
- Equivalent to reachability tests on random graphs
- Independent Cascade with Meeting Events [Chen, Lu, Zhang. AAAI'12]
 - Maximizing the influence spread within a given deadline
 - We have to consider shortest paths (not only reachability)

Running Time for Each Value of P

A Social Network

