
Fast and Accurate Influence Maximization

on Large Networks

with Pruned Monte-Carlo Simulations

Naoto Ohsaka (UTokyo)

Takuya Akiba (UTokyo)

Yuichi Yoshida (NII & PFI)

Ken-ichi Kawarabayashi (NII)

JST, ERATO, Kawarabayashi Large Graph Project

1

2014/7/30 AAAI-14 @ Québec, Canada

Influence Maximization
[Kempe, Kleinberg, Tardos. KDD’03]

 Input

 Directed graph 𝐺 = 𝑉, 𝐸
 Edge probability 𝑝𝑒 𝑒 ∈ 𝐸
 Size of seed set 𝑘

 Problem

 maximize 𝜎 𝑆 𝑆 ≤ 𝑘
 𝜎 ⋅ : the spread of influence

2

𝑨
𝑪 𝑫

𝑩
𝑬 𝑭

0.6 0.1

0.3
0.4 0.8

0.2 0.5

 Motivation

 Viral (word-of-mouth) Marketing
[Domingos, Richardson. KDD’01], [Richardson, Domingos. KDD’02]

Q. How to find a small group of influential individuals?

mathematically formalizing

 Each vertex has 2 states (inactive / active)

Diffusion Process

0. Activate vertices in 𝑆 ⊆ 𝑉 called seed set

1. Active vertex 𝑢 activates inactive vertex 𝑣
with probability 𝑝𝑢𝑣 (single trial)

2. Repeat 1 while new activations occur

Independent Cascade Model
[Goldenberg, Libai, Muller. Marketing Letters’01]

inactive active

3

𝒗𝒖

success or failure

𝑝𝑢𝑣 = 0.1

 Influence spread 𝜎 𝑆

 Expected number of active vertices
given a seed set 𝑆

Example of

Independent Cascade Model

4

Seed

Inactive

Active

Success

Failure

𝑨
𝑪 𝑫

𝑩
𝑬 𝑭

𝑨
𝑪 𝑫

𝑩
𝑬 𝑭

𝑨
𝑪 𝑫

𝑩
𝑬 𝑭

0.6 0.1

0.3
0.4 0.8

0.2 0.5

Previous Results

Hardness

Influence Maximization is

NP-hard
[Kempe, Kleinberg, Tardos. KDD’03]

Exact Computation of

𝜎 ⋅ is

#P-hard
[Chen, Wang, Wang. KDD’10]

Original Greedy

Approach
Greedy Algorithm

[Kempe, Kleinberg, Tardos. KDD’03]

Approx. ratio ≈ 63%

Monte-Carlo Simulations

Good approximation

5

 Greedy Algorithm [Kempe, Kleinberg, Tardos. KDD’03]

 Monte-Carlo Simulations (1 ± 𝜀 approximation)
[Kempe, Kleinberg, Tardos. KDD’03]

 Simulating diffusion process repeatedly

 Averaging # of active vertices

Original Greedy Approach

6

𝑆 ← ∅
while 𝑆 < 𝑘 do

𝑡 ← argmax
𝑣∈𝑉
𝜎 𝑆 ∪ {𝑣} − 𝜎(𝑆)

𝑆 ← 𝑆 ∪ {𝑡}

Due to submodularity of 𝜎 ⋅

𝜎 𝑆 ≥ 1 −
1

𝑒
OPT ≥ 0.63 OPT

[Nemhauser, Wolsey, Fisher.

Mathematical Programming’78]

Produces near-optimal 1 −
1

𝑒
− 𝜀′ solutions

Issue: Original Greedy Approach

Suffers from Scalability

Greedy Algorithm

of Evaluating 𝜎 ⋅ :

𝒏𝒌

Monte-Carlo Simulations

Computation Time of 𝜎 ⋅ :

𝑶 𝒎𝑹

Total Time: 𝑶 𝒌𝒏𝒎𝑹 (𝑅 ≈ 10,000)

𝑛 = 𝑉 >106

𝑚 = 𝐸 >107

𝑘: # of seeds

𝑅 = poly(𝜀−1): # of simulations

TOO SLOW

7

Previous Methods

for Influence Maximization

Low Quality High Quality

Slow

Greedy Approach
[Kempe, Kleinberg, Tardos. KDD’03]

CELF
[Leskovec, Krause, Guestrin, Faloutsos,

VanBriesen, Glance. KDD’07]

StaticGreedyDU
[Cheng, Shen, Huang, Zhang, Cheng. CIKM’13]

Fast

DegreeDiscount
[Chen, Wang, Yang. KDD’09]

PMIA
[Chen, Wang, Wang. KDD’10]

SAEDV
[Jiang, Song, Cong, Wang, Si, Xie. AAAI’11]

IRIE
[Jung, Heo, Chen. ICDM’12]

CHALLENGE

8

Simulation-based

Heuristic-based

Our Contribution

 Propose a simulation-based fast algorithm

 Fast

 Comparable to heuristics

 Can handle graphs

with 60M edges in 20 min.

 Accurate

 Has a theoretical guarantee

 Better than heuristics

9

Outline of Proposed Method

 Preprocessing: Generating random graphs

 Greedy Strategy

10

𝑆 ← ∅
while 𝑆 < 𝑘 do

𝑡 ← argmax
𝑣∈𝑉
𝜎 𝑆 ∪ {𝑣} − 𝜎(𝑆)

𝑆 ← 𝑆 ∪ {𝑡} ⇧ Our Speed-up Techniques

⇧ Coin Flip Technique

Preprocessing:

Generating Random Graphs

Edge 𝑒 lives w.p. 𝑝𝑒

11

……

𝑮𝟏

Input graph 𝑮

𝑮𝑹

𝑅 random graphs

𝑨
𝑪 𝑫

𝑩
𝑬 𝑭

𝑨
𝑪 𝑫

𝑩
𝑬 𝑭

𝑨
𝑪 𝑫

𝑩
𝑬 𝑭

Coin Flip Technique
[Kempe, Kleinberg, Tardos. KDD’03]

Computing influence spread 𝜎(𝑆)
||

Counting # of vertices reachable

from 𝑆 on random graph

live edge: success

blocked edge: failure

How to Approximate 𝜎(𝑆)

12

𝒗 𝝈𝑮𝟏 𝒗 … 𝝈𝑮𝑹 𝒗 𝝈 𝒗

𝑨 𝟑 … 𝟐 𝟐. 𝟒

𝑩 𝟒 … 𝟐 𝟐. 𝟖

𝑪 𝟐 … 𝟐 𝟏. 𝟔

𝑫 𝟏 … 𝟏 𝟏

𝑬 𝟏 … 𝟏 𝟏

𝑭 𝟑 … 𝟐 𝟐. 𝟐

𝑨
𝑪 𝑫

𝑩
𝑬 𝑭

𝑨
𝑪 𝑫

𝑩
𝑬 𝑭

…

𝜎 𝑆 ≈
1

𝑅

𝑖=1

𝑅

𝜎𝐺𝑖 𝑆

𝜎𝐺𝑖 𝑆 = # of vertices

reachable from 𝑆 on 𝐺𝑖

CHALLENGE

Computing this table

as fast as possible

𝑹 = 200

106

Proposed Speed-up Techniques
(we apply each random graph)

1. Pruned BFS for reachability tests (on random graphs)
(We will focus on this)

[Akiba, Iwata, Yoshida. SIGMOD’13]

[Yano, Akiba, Iwata, Yoshida. CIKM’13]

[Akiba, Iwata, Kawarabayashi, Kawata. ALENEX’14]

2. Reducing unnecessary influence recomputations

3. Reducing # of random graphs by

Sample Average Approximation approach
[Kimura, Saito, Nakano. AAAI’07], [Cheng, Shen, Huang, Zhang, Cheng. CIKM’13]

[Sheldon et al., UAI’10]

 We provide nice theoretical bound

13

These techniques do NOT affect

the estimation of 𝜎 ⋅

CORE IDEA

of

our paradigm

Pruned BFS

 Idea: Most BFSs are redundant

 Preprocessing: Compute ancestors and

descendants of vertex 𝐻 with max. deg.

 Pruning （BFS from 𝑣）: If 𝑣 is ancestor of 𝐻,

we ignore descendants of 𝐻

14

𝑯

𝑩
𝑨 𝑪

𝑬
𝑫 𝑭

2

+

4

(# of vertices visited during BFS)

+

(# of descendants of 𝐻)

⇧ Precomputed

Is Pruned BFS Really Effective?

 For Path Graphs

 Pruned BFS is NOT effective Θ 𝑉 2

 But, for Social Networks

 Pruned BFS works effectively

 since there is a hub
(or giant component)

15

𝑯

A path graph

Giant

Component

𝑯

A social network

Effect of Pruned BFS

on Social Networks
(LiveJournal dataset, 𝑉 = 4.8M, 𝐸 = 69M, 𝑝𝑒 = 0.1 ∀𝑒)

 # of vertices visited during Naive & Pruned BFSs

16

 Average # of visited vertices (from each vertex):

 400,000 (Naive BFS) ⇨ 6 (Pruned BFS)

Giant

Component

𝑯

P
ru

n
e

d
 B

F
S

Naive BFS

Experiments: Influence Spread
We set 𝒑𝒆 = 𝑷 for every edge. Size of seed set = 50

17

 Ours & StaticGreedyDU

give the best results

Dataset Ours
(this work)

StaticGreedy

DU
[Cheng+'13]

IRIE
[Jung+'12]

PMIA
[Chen+'10]

SAEDV
[Jiang+'11]

DBLP

𝑷 = 𝟎. 𝟎𝟏
332 330 323 317 76

DBLP

𝑷 = 𝟎. 𝟏
100076 -- 99533 99505 99579

LiveJournal

𝑷 = 𝟎. 𝟎𝟏
47527 -- 41906 40544 26066

LiveJournal

𝑷 = 𝟎. 𝟏
1686629 -- 1682436 -- 1682242

Dataset 𝑽 𝑬

DBLP 655K 2.0M

Live Journal 4.8M 69M

significantly

better

Experiments: Running Time [s]
We set 𝒑𝒆 = 𝑷 for every edge. Size of seed set = 50

18Environment: Intel Xeon X5670 (2.93GHz), 48GB, Language: C++

 As fast as heuristics

 Robust against value of 𝑷

Dataset Ours
(this work)

StaticGreedy

DU
[Cheng+'13]

IRIE
[Jung+'12]

PMIA
[Chen+'10]

SAEDV
[Jiang+'11]

DBLP

𝑷 = 𝟎. 𝟎𝟏
27 117 77 4 388

DBLP

𝑷 = 𝟎. 𝟏
52 OOM 77 289 388

LiveJournal

𝑷 = 𝟎. 𝟎𝟏
327 OOM 1622 500 1275

LiveJournal

𝑷 = 𝟎. 𝟏
663 OOM 1635 OOM 1294

Dataset 𝑽 𝑬

DBLP 655K 2.0M

Live Journal 4.8M 69M

Future Work

 Applying other models

 Parallelization

 Analysis of Pruned BFS on social networks

19

Supplement

21

Dataset

Pruned BFS

+

Technique 2

Naive BFS

+

Technique 2

Pruned BFS Naive BFS

DBLP

𝑷 = 𝟎. 𝟎𝟏
27 26 149 158

DBLP

𝑷 = 𝟎. 𝟏
54 3036 306 3275

LiveJournal

𝑷 = 𝟎. 𝟎𝟏
327 1934 2176 3820

LiveJournal

𝑷 = 𝟎. 𝟏
634 272518 2426 272973

Running Time [s] for Each Variant

of Our Method

Construct a Vertex-weighted DAG

from a Random Graph

Strongly Connected Component Decomposition

23

A

B C
3

1

2

2

Other Models for

Information Diffusion
 Linear Threshold Model [Kempe, Kleinberg, Tardos. KDD’03]

 Inactive vertex 𝑣 becomes active if

𝑢: active neighbor of 𝑣

𝑞𝑢𝑣 ≥ 𝜃𝑣

 𝜃𝑣: Threshold chosen from 0,1 uniformly at random

 Equivalent to reachability tests on random graphs

 Independent Cascade with Meeting Events [Chen, Lu, Zhang. AAAI’12]

 Maximizing the influence spread within a given deadline

 We have to consider shortest paths
(not only reachability)

24

Running Time for Each Value of 𝑷

25The Value of 𝑷

R
u

n
n

in
g

 T
im

e

A Social Network

26http://www.cise.ufl.edu/research/sparse/matrices/SNAP/soc-LiveJournal1.html

