2024.1.19 AFSA-BIECSE Rt IT—@ERAF

Reconfiguration Problems,
Hardness of Approximation, and
Gap Amplification:

What Are They?

Proc. 35th Annu. ACM-STAM Symp. Discrete Algorithms (SODA), 2024

Naoto Ohsaka

(CygerAgent, Inc.)

Q "Naoto Ohsaka" for paper link!!



1)
—L&
o .

Games, Puzzles,
& Computation

—

—_— —E Robert A. Hearn

E E Erik D. Demaine

a/S—bk-A-N=2

IYyy-D- ka1

Dad Puzzle
L'ane rouge
FaANYE

o\
CSSE

These puzzles are very much in want of a theory. Short of trial and error,
no one knows how to determine if a given state is obtainable from another given state
[Martin Gardner. Scientific American 1964]

oPSPACE-comple’re [Flake-Baum. Theor. Comput. Sci. 2002]

even if only

and

are available [Hearn-Demaine. Theor. Comput. Sci. 2005]
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Reconfiguration Problems



Intro of reconfiguration

Imagine connecting a pair of feasible solutions (of NP problem)
under a particular adjacency relation

Q. Is a pair of solutions reachable to each other?
Q. If so, what is the shortest transformation?
Q. If not, how can the feasibility be relaxed?

Q. Is the space of feasible solutions entirely connected?



Example 1-1
3-SAT Reconfiguration

[Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]
oInput: 3-CNF formula ¢ & satisfying o, o,
OOLI'prI'l'i O = (G(O):Os, ey G(Q)ZGt) (reconf. sequence) S.T.
o) satisfies ¢ (feasibility)
Ham(o("l), G(i)) =1 (adjacency on hypercube)

YES case

o = (XVyVz) A (XVyVZ) A (XVyVZ)
o, =(1,0,0)

g, = (0,1,0)

A Length of o can be 22nput size)
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Example 1-2

3- SAT Reconfiguration

[Gopalan-Kolaitis-Maneva- PGdeImITPIOU SIAM J. Comput. 2009]
oInput: 3-CNF formula ¢ & satisfying o, o,
OOLI'prI'l'i O = (G(O):Os, ey G(Q)ZOt) (reconf. sequence) S.T.
o) satisfies ¢ (feasibility)
Ham(o("l), G(i)) =1 (adjacency on hypercube)

NO case

= (XVyVZz) A (XVyVZ) A (XVyVZ)
o, = (1,0,0)

=(1,1,1)

A Length of o can be 22nput size)




Example 2-1
Independent Set Reconfiguration

[Hearn-Demaine. Theor. Comput. Sci. 2005]
eInput: Graph G & independent sets I, I, of size k
COLI'l'pLI‘l'I g = (I(O):Is, ey I(e):It) (reconf. sequence) S.T.

IO is independent & |I0| > k-1 (feasibility)

|I(i'1) A I(i)l = 1 (adjacency called token-addition-removal)

YES case (k=3)
O O
“S\» v\

L L,




Example 2-2
Independent Set Reconfiguration

[Hearn-Demaine. Theor. Comput. Sci. 2005]
eInput: Graph G & independent sets I, I, of size k
COLI'l'pLI‘l'I g = (I(O):Is, ey I(e):It) (reconf. sequence) S.T.

IO is independent & |I0| > k-1 (feasibility)

|I(i'1) A I(i)l = 1 (adjacency called token-addition-removal)
NO case (k=3)




Recipe for defining reconfiguration problems

[ITto-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

1. Source problem in NP

e Ask the existence of a feasible solution
E.g., satisfying assignments; independent sets

2.Transformation rule

e Define a (symmetric) adjacency relation btw. a pair of solutions
E.g., single assignment flip; addition or removal of a single vertex

Many reconfiguration problems derived from

Satisfiability, Coloring, Vertex Cover, Clique, Dominating Set, Feedback Vertex Sef,
Steiner Tree, Matching, Spanning Tree, Shortest Path, Set Cover, Subset Sum, ...

See [Nishimura. Algorithms 2018] [van den Heuvel. Surv. Comb. 2013]
[Hoang. https://reconf.wikidot.com/]



https://reconf.wikidot.com/

What we want to do in CS Theory

Elucidate the computational complexity of reconfiguration problems
Q. How much resources are required (w.r.t. the input size) ?

() NP-hard™
_ QO PSPACE-hard
time, space, randomness, PSPACE-comp,
# gates, nondeterminism, .
— A

oP & {probs. solvable in polynomial time}

oNP & {probs. solvable in polynomial time
given a polynomial-length witness}

ePSPACE % {probs. solvable in polynomial space}




Complexity of reconfiguration problems

Source problem Existence Reconfiguration

PSPACE-complete [Gopalan-Kolaitis-Maneva-
Papadimitriou. SIAM J. Comput. 2009]

PSPACE-complete
[Hearn-Demaine. Theor. Comput. Sci. 2005]

: P [Ito-Demaine-Harvey-Papadimitriou-Sideri-
AT i Uehara-Uno. Theor. Comput. Sci. 2011]

@ TN I NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN NN EENEEENEEEEEEEEEEY .

: P [Cereceda-van den Heuvel-Johnson. J. Graph
3-Coloring NP-complete Theory 2011]

PSPACE-complete
[Bonsma. Theor. Comput. Sci. 2013]

- Independent Set p NP-complete [Lokshtanov-Mouawad. ACM Tr'ans
», on bipartite graphs Algorithms 2019; SODA 2018] .

L 4

&y Nontrivial relation 1

Satisfiability NP-complete

Independent Set  NP-complete

Shortest Path P




(D A personal motivation

"NATURAL" PSPACE-complete problems

e Connecting a pair of feasible solutions is a reasonable idea

e Simulating a (polynomial-space) nondeterministic Turing machine
/\ Quantified Boolean Formula is another PSPACE-complete problem
IAXVX,3X5.. VX, (X, X5, X3, ..., X)?

o Easily derived from NP problems

LUE @@EANW? (at least for hardness of approximation)
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Hardness of Approximation

Gap Preserving Reductions Between
Reconfiguration Problems

Naoto Ohsaka =29 a

40th Int. Symp. on Theoretical Aspects of Computer Science (STACS), 2023



Optimization versions of
reconfiguration problems

Even if...
e @NOT reconfigurable! and/or
e @many problems are PSPACE-completel

Still want an "approximate” reconf. sequence
(e.g) made up of almost-satisfying assignments
or not-too-small independent sets
4
Let's RELAX feasibility!
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Example 1+

Maxmin 3-SAT Reconfiguration

[ITto-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]
oInput: 3-CNF formula ¢ & satisfying o, o,
OOUTPUTZ o= (0(0)305, e, G(e)zdt) (reconf. sequence) S.%.

c-setisfies—s (feasibility)

Ham(o("l), G(E)) =1 (adjacency on hypercube)
e Goal: max, val, (o) & min; (frac. of satisfied clauses by o("))

® = (XVyVZz) A (XVYVZ) A (XVyVZ)
o0, =(1,0,0)
o0, =(1,1,1)
- val,(0) = min {1, £, 1)
A Length of o can be 2input size)

2
3

0,100 101

010 011
10— >P1110,
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Example 2+
Maxmin Independent Set Reconfiguration

[ITto-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Compu‘r Sci. 2011]

eInput: Graph G & independent sets I, I, of size k
OOLI'l'pLI'l'i g = (I(O)‘ I(e) t> (reconf. sequence) S.T.
IO is mdependen’r S=E ==t (feasibility)

|I(' DA I(')l = 1 (adjacency called token-addition-removal)
| (l)l

eGoal:  max, vals(¥) & min,

EIEIEIEI&IEIEI

VC‘IG(J) - 2

16



Questions of interest
about approximate reconfiguration

Algorithmic side

e How well can we approximate reconfiguration problems?

Set Cover Reconf.
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

Subset Sum Reconf. [Ito-Demaine. J. Comb. Optim. 2014]
Submodular Reconf. [O.-Matsuoka. WSDM 2022]

Hardness side
e How hard is it to approximate reconfiguration problems?
{OMy interest [STACS 2023 & SODA 2024]

17



Known results on hardness of approximation

NP-hardness of approx. for Maxmin SAT & Ind. Set Reconf.
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

eNot optimal ."SAT Reconf. & Ind. Set Reconf. are PSPACE-comp.
eRely on NP-hardness of approximating Max SAT & Max Ind. Set

5. Open problems

There are many open problems raised by this work, and we mention some of these below:

e Can the MATCHING RECONFIGURATION problem for edge-weighted graphs be solved also in polynomial time? We
conjecture that the answer is positive.

e [s the TRAVELING SALESMAN RECONFIGURATION problem (where two tours are adjacent if they differ in two edges) PSPACE-
complete?

e Are there better approximation algorithms for the MINMAX POWER SUPPLY RECONFIGURATION problem? Lower bounds?
e Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?

18



Known results on hardness of approximation

NP-hardness of approx. for Maxmin SAT & Ind. Set Reconf.
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

eNot optimal ."SAT Reconf. & Ind. Set Reconf. are PSPACE-comp.
eRely on NP-hardness of approximating Max SAT & Max Ind. Set

Significance of showing PSPACE-hardness
e no polynomial-time algorithm (p » PspAcE)
e no polynomial-length sequence (NP = PSPACE)

(probabilistically checkable proof)

(@Reconfiguration analogue of the PCP theorem
[Arora-Lund-Motwani-Sudan-Szegedy. J. ACM 1998] [Arora-Safra. J. ACM 1998]

19



Our working hypothesis o sracs 20231

Reconfiguration Inapproximability Hypothesis (RIH)
Binary CSP G & satisfying y,, ., PSPACE-hard to distinguish btw.

o (Completeness) 3y vaIG(q;) =1 (some sequence violates no constraint)
e (Soundness) Yy vaIG(tv) < 1l-¢ (any sequence violates >e-frac. of constraints)
4 )

Binary CSP (Constraint Satisfaction Problem) in short:
Given a constraint system over variable pairs

Color each variable to satisfy as many constraints as possible

E.g., 3-Coloring & 2-SAT
G J

20



Our working hypothesis o sracs 20231

Reconfiguration Inapproximability Hypothesis (RIH)
Binary CSP G & satisfying y,, ., PSPACE-hard to distinguish btw.

o (Completeness) 3y valG(tp) =1 (some sequence violates no constraint)
e (Soundness) Yy VC(|G(W) < 1l-¢ (any sequence violates >e-frac. of constraints)
1
(>
1-¢
<q}51 W(l): ' W—l)l q}t>>

Q. Which reconfiguration problems are

PSPACE-hard to approximate under (seemingly) plausible RIH?
21



Our (previous) results (o stacs 20231

e @ Under RIH, many problems are PSPACE-hard to approximate

How? Gap-preserving reductionsl!|

Gap[1 vs. 1-g] Binary CSP Reconf.
PROMISE: ¢ € (0,1) is const.

4 4 )
Jy val;(p) =1 do val (o) =1
(Perfect) Completeness— polynomial-time

transformation
Soundness™
/ vo val, (o) < 1-0
4 <1-

Gap[1 vs. 1-6] 3-SAT Reconf.
@3 € (0,1) depends only on ¢

22



Related work

Probabilistically checkable debate systems
[Condon-Feigenbaum-Lund-Shor. Chic. J. Theor. Comput. Sci. 1995]

e PCP-like charact. of PSPACE
e = Quantified Boolean Formula is PSPACE-hard to approx.

Other optimization variants of reconfiguration (orthogonal to this study)

e Shortest sequence
[Bonamy-Heinrich-Ito-Kobayashi-Mizuta-Mihlenthaler-Suzuki-Wasa. STACS 2020]
[Lto-Kakimura-Kamiyama-Kobayashi-Okamoto. STAM J. Discret. Math. 2022]
| Kaminski-Medvedev-Milani¢. Theor. Comput. Sci. 2011]
[Miltzow-Narins-Okamoto-Rote-Thomas-Uno. ESA 2016]

e Incremental optimization
[Blanché-Mizuta-Ouvrard-Suzuki. IWOCA 2020]
[Ito-Mizuta-Nishimura-Suzuki. J. Comb. Optim. 2022]
[Yanagisawa-Suzuki- Tamura-Zhou. COCOON 2021]
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Gap Amplification

Gap Amplification for Reconfiguration Problems*

Naoto Ohsaka'
Proc. 35th Annu. ACM-STAM Symp. Discrete Algorithms (SODA), 2024



Limitation of [0. sTACS 20231

@ Inapprox. factors are not explicitly shown

Recall from [0. STACS 2023]
oRIH claims "3e > O, Gap[1 vs. 1-€] Binary CSP Reconf. is PSPACE-h."
e Can reduce to [[Gap[l VS. 1—6]]] k% Reconf.

/\ 3 (as well as €) can be arbitrarily small, because...
¢d depends oh € (eg., 3 = ¢?)
oRIH doesn't specify any value of € (eg., ¢ = 1/210000)
=» May not rule out 0.999:--999-approx. for * * Reconf.

@ Gap[1 vs. 0.999] * * Reconf. is PSPACE-hard only assuming RIH
25



@ Our target: Gap amplification

e (Polynomial-time) reduction that makes a tiny gap into a larger gap

(EIW VGIG(W) =1 rfllll* VGIG*(W*) _ 1N
A 8> ¢
In NP world... A4 valg(y) < 1-¢ JN\VW* val«(p*) < 1-

The parallel repetition theorem [Raz. STAM J. Comput. 1998]
-» Q) Gap[1 vs. 0.000---001] Binary CSP is NP-hard (i.e. gap » 1)

In reconfiguration world...

@ Nadive parallel repetition fails to amplify gap € of

Gap[1 vs. 1-¢] Binary CSP Reconf. [0. arxiv 2023]
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@ Our target: Gap amplification

e (Polynomial-time) reduction *-at makes a * p into a larger gap

(3w val (v el 1)

Can we derive explicit factors of .
- - PSPACE-hardness of approx. _

- only assuming RIH? ey
- SINr-in.. fie.gap=z1l)

In reconfigur ..on world...
@ Nadive parallel repetition fails to amplify gap € of
Gap[1 vs. 1-g] Binary CSP Reconf. [0. arXiv 2023] >



Our results [O. SODA 2024]

@ Can derive explicit inapproximability factors only assuming RIHI!

Maxmin Binary CSP Minmax Set Cover
Reconfiguration Reconfiguration
PSPACE-hardness 0.9942 (+his paper) 1.0029 (this paper)

under RIH

NP-hardness | >0.75 (this paper)

rely on paralle| repetition 0.993 [Ito et al. Theor. Comput. 1.0029 (this paper)

theorem [Raz. STAM J. .
Comput. 1998] Sci. 2011] [O. STACS 2023]

approximability |~0.25 [0. arxiv 2023] gd[I;rglel’; al. Theor. Comput.

28



Main result [0. soDA 20247

Gap amplification for Binary CSP Reconf.

e We prove gap amplification a la Dinur [Dinur. 7. AcM 2007]

(Informal) For any small const. € € (0,1),

gap alphabet size degree spectral expansion
1vs. 1-¢ W d A
1
_ O(e™) d O(e™) x — o Mg
1vs. 1-0.0058 | y* — wd = (9) » = 0(3)d

e @ Can make A*/d* arbitrarily small by decreasing A/d
o @ Alphabet size W* gets gigantic depending on ¢

29



Application [0. sODA 2024]

Inapprox. of Minmax Set Cover Reconf.

oPSPACE-hard to approx. within 1.0029 under RIH

e 2-approximation is known
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

(Informal) Gap-preserving reduction from
Gap[1, €] Binary CSP Reconf. (with small 2/d) to
Gap[l, ~ 2—+/€] Set Cover Reconf.

e Based on [Lund-Yannakakis. J. ACM 1994] but
expander mixing lemma [Alon-Chung. Discret. Math. 1988] iS heeded

30



() BREAK: Why is it accepted to SODA?

(from my personal point of view)
o (Of course) I was lucky... 190/652229%

e Open up the hardness-of-approximation for reconf. problems
oRIH seems to be considered somewhat important (within review)

e Nonftrivial extension of Dinur's gap ampl. [Dinur. 7. AcM 2007] to reconf.
From arbitrarily small gap to universal const.

if RIH holds this paper ??7?
1/poly any small e~0 £,b=0.0058 EopT =37

e Demonstrate usefulness of alphabet squaring trick [0. sTACS 2023]
(explained later) -



In the remainder of this talk...

Proof sketch of gap amplification

1. Preprocessing step
e Degree reduction [0. STACS 2023]
e Expanderization (skipped)

2. Powering step

e Simple appl. of [Dinur. J. ACM 2007] [Radhakrishnan. ICALP 2006] 0
Binary CSP Reconf. looses perfect completeness

e TRICK: Alphabet squaring [0. sTAcs 2023] & modified verifier

32



Recap: Max Binary CSP

eInput: Binary CSP G = (V,E,Z,TT=(m,),cc), Wwhere T, € 22
oOutput: y: Vo2

y satisfies (vw) if (w(v), y(w)) € Ty, )
e Goal: max, valg(y) € (frac. of edges satisfied by y)

Example
e 3-Coloring: > = {R,G,B}, m,={(R,G), (G ,R), (G,B), (B,G), (B,R), (R,B)}
o2-SAT: X2 ={01}, m,.={asgmt. satisfying 2-literal clause C}

33



Recap: Dinur's powering, in a nutshell

[Dinur. J. ACM 2007]

@ Two goals:
(Completeness) 3y val(w)=1 = 3J¢* val.(p*)=1
(Soundness) vy val(y) < 1-e =  vy* vala«(p*) < 1-0(T-¢)

| const. parameter (

How? Virtually examine T edges simultaneously:

e 1. Each vertex has "opinions” about the color of all vertices
for simplicity-?

e2. Sample a length-T random walk W with endpoints x & y
e 3. Constraint & agreement test over opinions of x & y along with W

34



Recap: Dinur's powering [Dinur. J. ACM 2007]

Graph construction .
Say 3-Coloring ={R 5 B}

Original 6 = (V E 2, TT=(m,).ce) =
/\ G must be EXPANDER

Asgmt. y: V-2 ->

35



Recap: Dinur's powering [Dinur. J. ACM 2007]

Graph construction

)Say 3-Coloring £={R,5,8B}

Original 6 = (V.E,Z,TT=(m,),ce) @ New 6™ = (V,E*,2*|]
/\ G must be EXPANDER

Asgmt. y: V-X 2  Asgmt. y*: Vo3V

for simplicity-?

5 S—

oy*(x)[v] & "opinion” of x about the color of v




Recap: Dinur's powering [Dinur. J. ACM 2007]

Graph construction

)Say 3-Coloring £={R,5,8B}

Original 6 = (V.E,Z,TT=(m,),ce) @ New 6™ = (V,E*,2*|]
/\ G must be EXPANDER

Asgmt. y: V-X 2  Asgmt. y*: V-2V

for simplicity-?

oy*(x)[v] & "opinion” of x about the color of v

eedge of G* = a length-T random walk over G
const. parameter

*)

37



Recap: Dinur's powering [Dinur. J. ACM 2007]

Verifier's test on G* (1)[Radhakrishnan. ICALP 2006]

Pick a random walk W = (e, ..., e7) from x fo y
Y*(x) & v*(y) pass the test at e, = (v,w) if

—_— >

x & y agree on color of (v,w)
opinions about (v,w) satisfy m,
_— e~
def

w* satisfies W < y*(x) & y*(y) pass test at every edge in W

38



Recap: Dinur's powering [Dinur. J. ACM 2007]

Verifier's test on G* (2) [Radhakrishnan. ICALP 2006]

Pick a random walk W = (e, ..., e7) from x fo y
Y*(x) & v*(y) pass the test at e, = (v,w) if

o *(x)[v] = w*(y)[v]

oy*(x)[w] = y*(y)[w]

o (W*(x)[v], ¥*(X)[w]) satisfies e,

y*(X)IvI=R failurell  v*(y)lv]=B




Recap: Dinur's powering [Dinur. J. ACM 2007]

Verifier's test on G* (3) [Radhakrishnan. ICALP 2006]

Pick a random walk W = (e, ..., e7) from x fo y
Y*(x) & v*(y) pass the test at e, = (v,w) if

o y*(x)[v] = w*(y)Lv]

oy*(x)[w] = y*(y)w]

o (W*(x)[v], ¥*(x)[w]) satisfies e

y*(x)[v]=R y*(y)[v]=R

v*)wl=R  failurell y*(y)w]=R

40



Recap: Dinur's powering [Dinur. J. ACM 2007]

Verifier's test on G* (4) [Radhakrishnan. ICALP 2006

Pick a random walk W = (e, ..., e7) from x fo y
Y*(x) & v*(y) pass the test at e, = (v,w) if

o p*(x)[v] = w*(y)Iv]

oy*(x)[w] = y*(y)[w]

o (W*(x)[v], v*(x)[w]) satisfies e

y*(x)[v]=R y*(y)[v]=R

OmI=6 passl&) v owl=6

41



Recap: Dinur's powering [Dinur. J. ACM 2007]

Completeness side

@6Goal: 3y val (y) =1 = Jy* val(y*) = 1
Optimal y: VX% = let ¢*(x)[v]=¢*(y)[v]="=y(v)

42



Recap: Dinur's powering [Dinur. J. ACM 2007]

Soundness side [Radhakrishnan. ICALP 2006]

@6Goal: vy val (y) < 1-¢ = vy* valg«(g*) < 1-Q(T-¢€)
Some y: V-2 € Optimal y*: V-xV
plurality vote

oIf verifier checks one of e-frac. unsat. edges e, w.r.t. y,
y* doesn't pass test at e; w.p. £2(1)

OEd es in RWs W are Falrwse independent & uniform (aimost)
‘rhis is where expansion is applie

-> Q@ verifier rejects w.p. =(1)-c-E[length of W] = QQ(T-¢)




Maxmin Binary CSP Reconfiguration

[Ito et al. Theor. Comput. Sci. 2011] [O. STACS 2023]

eInput: Binary CSP G = (V,E,Z,TT=(m,),cc) & satisfying y,, y,: VX

eOutput: y = (yO=y,, ..

. w(f):q)t) (reconf. sequence) S.%.

y-setisfiesa

edges—efb (feasibility)

Ham(tp("l), Lll(i)) = 1 (adjacency on hypercube)

eGoal: max,, valg(p) € min; (frac. of edges satisfied by y)

OPT.(y, v ¢,) & max. value of -~

RIH = 3¢ >0, Gap[1 vs. 1-¢] Binary CSP Reconf. is PSPACE-hard:

o OPT (ys «v ) =1
® OPT(ys v y,) < 1-¢

(3y every y() satisfies all edges), or

(Vy some YO violates e-frac. of edges)
44



Difficulty of powering Binary CSP Reconf.
&) Loosing perfect completeness

@6oal:  OPT (y;«vy)=1 H OPTL(*, «wy*) =1
All vertices should have the SAME opinion about the color of v

vx p* (x)[v] & R Axy Y*O(x)[v] #y*O(y)Iv] vx p*(x)[v]< B
@) Verifier rejects—

45



Our solution

Alphabef squar'ing '|'I"iCk[o. STACS 2023]

(@ Think as if opinion could take a pair of colors!
eOriginal ~ ={R, G, B}

e New 2= {R, G, B, RG, GB, BR}

ead & P are consistent < acp or a2p

/\ Asgmt. on G* is now y*: V—>(qu)v, hot Mﬁ%*é

R [RG| G |GB| B |BR
RO®G® ®
RGO O O®
C| OO0 ®
GB 00
B 00
BR @ 0
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Our solution

Modifying verifier's test (1)
(@ Think as if opinion could take a pair of colors!
eOriginal ~ ={R, G, B}

e New 2= {R, G, B, RG, GB, BR}

ea & P are consistent < acp or a=2p

Pick RWW = (e, ..., e7) from x to y as before
W*(x) & ¢*(y) pass modified test at e; = (v,w) if

R [RG| G |GB| B |BR
RO®G® ®
RGO O O®
C| OO0 ®
GB 00
B 00
BR @ 0

g opinions of x & y are consistent at (v,w)
_ opinions about (v,w) sa’nsf&r(&w) >

>
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Our solution

Modifying verifier's test (2)
(@ Think as if opinion could take a pair of colors!
eOriginal ~ ={R, G, B}

e New 2= {R, G, B, RG, GB, BR}

ea & P are consistent < acp or a=2p

Pick RWW = (e, ..., e7) from x to y as before
W*(x) & ¢*(y) pass modified test at e; = (v,w) if

y*(x)[v]=8B y*(y)[v]=BR

R [RG| G |GB| B |BR
RO®G® ®
RGO O O®
C| OO0 ®
GB 00
B 00
BR @ 0
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Our solution
Modifying verifier's test (3)

(@ Think as if opinion could take a pair of colors!
eOriginal ~ ={R, G, B}

e New 2= {R, G, B, RG, GB, BR}

ead & P are consistent < acp or a2p

Pick RWW = (e, ..., e7) from x to y as before

Wv*(x) & y*(y) pass modified test at e, = (v,w) if
(C1) y*(x)[v] & y*(y)[v] are consistent

(C2) y*(x)[w] & y*(y)[w] are consistent

R [RG| G |GB| B |BR
RO®G® ®
RGO O O®
C| OO0 ®
GB 00
B 00
BR @ 0

(C3) (W*(X)Iv] U w*(Y)IvD) X (9*(x)[w] U w*(Y)Iw]) € 7,

/\ This verifier is "much weaker" than before

49




@ Alphabet squaring
preserves perfect completeness

@6oal:  OPTy(ys «v y) =1 =  OPTou(y*s v y*;) = 1

Can transform all R opinions into all B opinions via BR's
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Why the modified verifier works
Soundness: Overview

@6Goal: OPT (y, «v» y) < 1-¢ = OPT(y*, «v y*.) < 1-QQ(T-¢)

p = (YO, ., y®) <  Optimal ¢* = (y*©@, ., p*©)
plurality vote

R G B
2 1 1
->y(v) ¥R
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Why the modified verifier works
Soundness: Overview

@6Goal: OPT (y, «v» y) < 1-¢ = OPT(y*, «v y*.) < 1-QQ(T-¢)
Y = (YO, ., y®) ¢ Optimal ¢* = (y*O),  ¢*®)
plurality vote
e Can show "3i val (y®M) < 1-g+0(1)" (slightly nontrivial)
e Suppose Yl violates (v,w) of G

[Pr[tll*(i) fails modified ftest at (v,w) | W touches (v,w)] = Q(l)]

/\ DIFFERENT from g Vo (2, )V but g®: VX
[Radhakrishnan. ICALP 2006] {R, G, B, RG, GB, BR} {R, G, B)
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Why the modified verifier w.orks . o
Soundness: Bounding failure probability

@ Bound Y% < Pr[y* fails modified test at (v,w) | W touches (v,w)]

assuming “plurality vote y violates m, "

p, & pr[w*(x)[v] 3 Y(v)] Prob. random opinion over RW from v or w
is consistent with plurality vote

py = P ry[w*(y)[W] 5 y(w)] v*(x)[v]=R *(y)[v]=BR
60 ¥e, 0D
p, & p,, are UNKNOWN, but... V() [W]=G W (Y)WI=6

(1) Pr'x'y[q)*(x)[v] & y*(y)[v] are consist.] <[2-p, 2-factor loss from
(2) PPX,Y[W*(X)[W] & W*(Y)[W] are consist.] <|2 ‘P [Radhakrishnan. ICALP 2006]

(3) Pry y[W*(X)IV] 3 w(v) & ¢*(y)Iw] 3 w(w)] = p,-p,,

2>Q ¥% = max{1-2-p,, 1-2:p,,, p," P} = (V2 — 1)2
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Why the modified verifier works
Where 2-factor loss comes from

oA & p: distribution over 2

odp € argmax, s Pry.jla & X are consistent] (depending only on a)
this is exactly plurality vote—

op = Pry.ldpr & X are consistent]
°q = Pry.) y~y[X &Y are consistent]

@q<2p
E.g. R B RB
ey, =R A 051 049 O
op=051,q=1 | # O O 1



What Are They?



Conclusions: We have seen...

Reconfiguration
¢ Brand-new, puzzle-like PSPACE-complete problems

PSPACE-hardness of approximation SR
* May require a theory beyond the PCP theorem for NP o . =5

Gap amplification
e We *partially* made it (a la Dinur)!l

MANY OPEN QUESTIONS
o Algorithmic results? Proof of RIH? Optimal inapprox.?




Breaking news: A few weeks ago...

Proof of RIH

e Independently announced by

[Karthik C. S.-Manurangsi. 2023. https://arxiv.org/abs/2312.17140]
[Hirahara-O. 2024. https://arxiv.org/abs/2401.00474]

e Both applying PCP of proximity
[Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan. SIAM J. Comput. 2006]
[Dinur-Reingold. STAM J. Comput. 2006]

TighT NP-hardness [Karthik C. S.-Manurangsi. 2023]
e Binary CSP Reconf. is NP-hard to approx. within 3+¢
e Set Cover Reconf. is NP-hard to approx. within 2-¢

To be continued...


https://arxiv.org/abs/2312.17140
https://arxiv.org/abs/2401.00474

	Prologue
	スライド 1: Reconfiguration Problems, Hardness of Approximation, and Gap Amplification: What Are They? Proc. 35th Annu. ACM-SIAM Symp. Discrete Algorithms (SODA), 2024
	スライド 2: Prologue: Sliding block puzzle

	Intro
	スライド 3: Reconfiguration Problems, Hardness of Approximation, and Gap Amplification: What Are They? 
	スライド 4: Intro of reconfiguration
	スライド 5: Example 1-1 3-SAT Reconfiguration [Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]
	スライド 6: Example 1-2 3-SAT Reconfiguration [Gopalan-Kolaitis-Maneva-Papadimitriou. SIAM J. Comput. 2009]
	スライド 7: Example 2-1 Independent Set Reconfiguration [Hearn-Demaine. Theor. Comput. Sci. 2005]
	スライド 8: Example 2-2 Independent Set Reconfiguration [Hearn-Demaine. Theor. Comput. Sci. 2005]
	スライド 9: Recipe for defining reconfiguration problems [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

	Complexity
	スライド 10: What we want to do in CS Theory
	スライド 11: Complexity of reconfiguration problems
	スライド 12: 🤪A personal motivation

	Hardness of approximation
	スライド 13: Reconfiguration Problems, Hardness of Approximation, and Gap Amplification: What Are They? 
	スライド 14: Optimization versions of reconfiguration problems
	スライド 15: Example 1+ Maxmin 3-SAT Reconfiguration [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]
	スライド 16: Example 2+ Maxmin Independent Set Reconfiguration [Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]
	スライド 17: Questions of interest about approximate reconfiguration
	スライド 18: Known results on hardness of approximation
	スライド 19: Known results on hardness of approximation
	スライド 20: Our working hypothesis [O. STACS 2023]
	スライド 21: Our working hypothesis [O. STACS 2023]
	スライド 22: Our (previous) results [O. STACS 2023]
	スライド 23: Related work

	Gap amplification
	スライド 24: Reconfiguration Problems, Hardness of Approximation, and Gap Amplification: What Are They? 
	スライド 25: Limitation of [O. STACS 2023] 😖Inapprox. factors are not explicitly shown
	スライド 26: 🎯Our target: Gap amplification
	スライド 27: 🎯Our target: Gap amplification
	スライド 28: Our results [O. SODA 2024]
	スライド 29: Main result [O. SODA 2024] Gap amplification for Binary CSP Reconf.
	スライド 30: Application [O. SODA 2024] Inapprox. of Minmax Set Cover Reconf.
	スライド 31: 🤪 BREAK: Why is it accepted to SODA?  (from my personal point of view)

	Proof idea
	スライド 32: In the remainder of this talk… Proof sketch of gap amplification
	スライド 33: Recap: Max Binary CSP
	スライド 34: Recap: Dinur's powering, in a nutshell                         [Dinur. J. ACM 2007]
	スライド 35: Recap: Dinur's powering [Dinur. J. ACM 2007] Graph construction
	スライド 36: Recap: Dinur's powering [Dinur. J. ACM 2007] Graph construction
	スライド 37: Recap: Dinur's powering [Dinur. J. ACM 2007] Graph construction
	スライド 38: Recap: Dinur's powering [Dinur. J. ACM 2007] Verifier's test on G* (1) [Radhakrishnan. ICALP 2006]
	スライド 39: Recap: Dinur's powering [Dinur. J. ACM 2007] Verifier's test on G* (2) [Radhakrishnan. ICALP 2006]
	スライド 40: Recap: Dinur's powering [Dinur. J. ACM 2007] Verifier's test on G* (3) [Radhakrishnan. ICALP 2006]
	スライド 41: Recap: Dinur's powering [Dinur. J. ACM 2007] Verifier's test on G* (4) [Radhakrishnan. ICALP 2006]
	スライド 42: Recap: Dinur's powering [Dinur. J. ACM 2007] Completeness side
	スライド 43: Recap: Dinur's powering [Dinur. J. ACM 2007] Soundness side [Radhakrishnan. ICALP 2006]
	スライド 44: Maxmin Binary CSP Reconfiguration [Ito et al. Theor. Comput. Sci. 2011] [O. STACS 2023]
	スライド 45: Difficulty of powering Binary CSP Reconf. 😭Loosing perfect completeness
	スライド 46: Our solution Alphabet squaring trick [O. STACS 2023]
	スライド 47: Our solution Modifying verifier's test (1)
	スライド 48: Our solution Modifying verifier's test (2)
	スライド 49: Our solution Modifying verifier's test (3)
	スライド 50: 😋Alphabet squaring     preserves perfect completeness
	スライド 51: 😋Alphabet squaring     preserves perfect completeness
	スライド 52: 😋Alphabet squaring     preserves perfect completeness
	スライド 53: Why the modified verifier works Soundness: Overview
	スライド 54: Why the modified verifier works Soundness: Overview
	スライド 55: Why the modified verifier works Soundness: Bounding failure probability
	スライド 56: Why the modified verifier works Where 2-factor loss comes from

	Conclusions
	スライド 57: Reconfiguration Problems, Hardness of Approximation, and Gap Amplification: What Are They? 
	スライド 58: Conclusions: We have seen…
	スライド 59: Breaking news: A few weeks ago...


