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Prelude
What I was interested in

On the complexity of reconfiguration problems [ISAAC 2008 & Theor. Comput. Sci. 2011]

Takehiro Ito®*, Erik D. Demaine®, Nicholas J.A. Harvey€, Christos H. Papadimitriou?
Martha Sideri®, Ryuhei Uehara®, Yushi Uno?®

5. Open problems

There are many open problems raised by this work, and we mention some of these below:

e Can the MATCHING RECONFIGURATION problem for edge-weighted graphs be solved also in polynomial time? We
conjecture that the answer is positive.

e [s the TRAVELING SALESMAN RECONFIGURATION problem (where two tours are adjacent if they differ in two edges) PSPACE-
complete?

e Are there better approximation algorithms for the MINMAX POWER SUPPLY RECONFIGURATION problem? Lower bounds?

e Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?
Theme of this talk

This open problem has been resolved

3



Outline of this talk

Part I
What is meant by "approximation”

Part IT
Complexity of approximating reconf. problems

Part ITI

Recent progress, S‘h’"w?j & future directions



Recap
Exact reconfiguration — a decision problem

Q. Is a pair of feasible solutions reachable to each other?

Adjacency relation
Feasible solution

)&ar

Configuration graph



Recap
Exact reconfiguration — a decision problem

Q. Is a pair of feasible solutions reachable to each other?

Sini
Reconfiguration
sequence
)&ar

YES,



Recap
Exact reconfiguration — a decision problem

(@ Something that "looks" like a reconf. sequence even if
1. we are given a NO instance, or

2. we are dealing with intractable reconf. problems

tar




Our focus
Approximate reconf. — an optimization problem

feasibility Q. To what extent should the feasibility be relaxed?
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Approximate reconf. — an optimization problem

feasibility Q. To what extent should the feasibility be relaxed?
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Our focus
Approximate reconf. — an optimization problem

Q. To what extent should the feasibility be relaxed?
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Example 1

3- SAT Reconfiguration

[Gopalan-Kolaitis-Maneva- Papadlml‘rr'iou SIAM J. Comput. 2009]
oInput: 3-CNF formula ¢ & satisfying asgmts. o,,;, 04,
OOLI'l'pLITI o= (0(1)=Oini, e G(T)Zo’rar) (reconf. sequence) S.T.
o(t) satisfies ¢ (feasibility)
Ham(o(t), G(t+1)) =1 (adjacency on hypercube)

000 001

100

¢ = (xvy) A (xvz) A (XVyVz)
0ii(xy.z) = (1,1,0)
Gmr(X:Y:Z) — (1:0:1)

—

11

YES,



Example 2

3- SAT Reconfiguration

[Gopalan-Kolaitis-Maneva- Papadlml‘rr'lou SIAM J. Comput. 2009]
oInput: 3-CNF formula ¢ & satisfying asgmts. o,,;, 04,
OOLI'l'pLITZ o= (0(1)=Oini, e G(T)zo’rar) (reconf. sequence) S.T.
o(t) satisfies ¢ (feasibility)
Ham(o(t), G(t+1)) =1 (adjacency on hypercube)

100 101

¢ = (xvy) A (xvz) A (XVyVz)
0ii(xy.z) = (1,0,0)
Oior(xy,2) = (0,11)

110 111




Example 3

Maxmin 3-SAT Reconfiguration

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]
eInput: 3-CNF formula ¢ & satisfying asgmts. o, 04,
OOLI'l'pLITI o= (0(1)=Oini, e G(T)Zo’rar) (reconf. sequence) S.T.
G%#i#&@sq? (feasibility)
Ham(o(t), G(t+1)) =1 (adjacency on hypercube)
e Goaal: maximize val (d) :== min, (frac. of satisfied clauses by o(%)
101

¢ = (xvy) A (xvz) A (XVyVz)
oni(x.y.z) = (1,0,0)
Oior(Xxy,2) = (0,1,1)

val (@) = min {1, £, 5, 1} =

010 (011

0.33

110



Example 4

Maxmin 3-SAT Reconfiguration

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]
eInput: 3-CNF formula ¢ & satisfying asgmts. o, 04,
OOUTPUTI o= (0(1)=Oini, e G(T)zo’rar) (reconf. sequence) S.T.
6%##5@549 (feasibility)
Ham(o(t), G(t+1)) =1 (adjacency on hypercube)
e Goaal: maximize val (d) :== min, (frac. of satisfied clauses by o(%)
101

¢ = (xvy) A (xvz) A (XVyVz)
0i,i(xy.z) = (1,0,0)
Orar(X.y,2) = (0,1,1)

val (@) =min{l, 1,5 1} =

111 15



Defining approximation algorithms

a-approximation algorithm A for Maxmin 3-SAT Reconf.
oIf thereiso s.t. valq,(a’*) >0 (vo () satisfies > 6-frac. of clauses)
ethen A finds o s.t. V(ll(p((_f) > add (Vo satisfies > ad-frac. of clauses)

o, o0o@® o3 . o2 oD g
16



Exercise 1

0.5-approx. alg. for Maxmin 3-SAT Reconf.

eInput: 3-CNF formula ¢ & satisfying asgmts. g, 04,
eRun: Sample a random ordering T of vars s.t. 0;,(X) # 0;4.(X)
Create a reconf. sequence ¢ = (ocV)=g,, ..., 0(N=a0;,.)

by flipping m(1), m(2), n(3), ...

Observe: " } i 1 JNl) (1)
For any clause C satisfied by 6, & 04r y[ 01 | 1 | 1 | 1
Pr_[every o) satisfies ] = 05 =#| 1| 1| 1| 1=p0

~ olo]Jolofo

- E_[val,(0)] = 0.5 @[T 140 [0 [0

Oini g@ o3 g Ot ar



Other approximate versions

e Maxmin Independen‘r Set Reconf. under token-addition-removal model
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]
[de Berg-Jansen-Mukherjee. Discret. Appl. Math. 2018]

nlal-nlalaltl-i]

e Minmax Vertex Cover Reconf. [ITto-Nooka-Zhou. IEICE Trans. Inf. Syst. 2016]

e Minmax Set Cover Reconf.
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

e Subset Sum Reconf. [Ito-Demaine. J. Comb. Optim. 2014]
e Submodular Reconf. [O.-Matsuoka. WSDM 2022]

e Maxmin 2-CSP Reconf. [Karthik C. S.-Manurangsi. 2023] [O. 2023] 18



Questions of interest

Algorithmic side
e How well can we approximate reconfiguration problems?

Hardness side
e How hard is it to approximate reconfiguration problems?

OMy interest

19



Outline of this talk

Part I
What is meant by “"approximation”

Part IT
Complexity of approximating reconf. problems

Part ITI

Recent progress, STY‘"M@ & future directions

20



Exercise 2

What we already know

e Maxmin 3-SAT Reconfiguration is...

PSPACE-comp

PSPACE

X

[Gopalan-Kolaitis-Maneva-Papadimitriou.
= C O l ‘ \ p o SIAMJ. Comput. 2009]

/\ Approximate versions are (at least) harder than decision problems
21



Our focus

(2 Three possible worlds(?)

00.999-approx. of Maxmin 3-SAT Reconfiguration is...

X

We only know NP-hardness

(until recently)
[Ito-Demaine-Harvey-Papadimitriou-

PSPA< E_ C m Sideri-Uehara-Uno. ISAAC 2008 &
O p o Theor. Comput. Sci. 2011]

e Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?
22



So why we need PSPACE-completeness?

It doesn't matter whether NP-hard or PSPACE-hard. @

o algorithm designer
1. PSPACE-completeness is tight

e2. No efficient algorithm under P = PSPACE

¢ 3. No short reconf. sequence under NP = PSPACE

23



Significance of PSPACE-completeness

1. PSPACE-completeness is tight

ElReconfiguration problems of

Satisfiability, Independent Set, Coloring, Vertex Cover, Dominating Set, Clique,
Shortest Path, Hamiltonian Cycle, Feedback Vertex Set, Steiner Tree,
Vertex Separator, Odd Cycle Transversal, Induced Forest, L(2,1)-Labeling,
Integer Linear System, Target Set, Set Cover, Subset Sum, H-word

are PSPACE-complete
PSPACE-comp. of approx. implies...

@) Solving approximately is as hard as solving exactly
24



Significance of PSPACE-completeness
2. No efficient algorithm under P = PSPACE

Proposition RW’s Estimated Likelihood

TRUE 100%
EXP"" #£ BPP 99%
NEXP ¢ P/poly 97%

L £ NP 95%
NP ¢ SIZE(n") 93%
BPP C SUBEXP 90%

P £ PSPACE 90%

P # NP 80%

ETH 70%

[Ryan Williams. "Some estimated likelihoods for computational complexity”. 2019]

@) Become 10% more confident

25



Significance of PSPACE-completeness
3. No short reconf. seq. under NP = PSPACE

Suppose “there is a 0.999-approx. reconf. sequence of poly-length”

O =
Can find it by NP machine

o, o0& o® o2 T

o’rar'

/\ Diameter of 3-SAT Reconf. can be 211"
[Gopalan-Kolaitis-Maneva-Papadimitriou. STAM J. Comput. 2009]

@ Complexity results imply some) structural proper’ries26



Formulating hardness of approximation

Gap[1vs. 1-£] 3-SAT Reconfiguration

eInput: ¢ & satisfying o, 0y,
e Goal: Distinguish between
(Completeness) Jo V(llq)(a')) =1
(Soundness) vo val (o) < 1-¢

every oY) satisfies all clauses

1

=G pooce some o violates >e-frac. of clauses

(@) = mi . of satisfied clauses by o®) O
valy() = min (frac. of safisfied clauses by ) %75 6@ o® _ oD oD g,

Gapl[1 vs. 1] 3-SAT Reconf. is PSPACE-comp.
Gap[lvs.05] 3-SAT Reconf. is P . .
Gap[1vs. 0.999] 3-SAT Reconf. is C-hard
= 0.999-approx. of Maxmin 3-SAT Reconf. is C-hard ]
7



Known hardness-of-approx. results by 2022
NP-hard Max Ind. Sef HMaxmin Ind. Set Reconf.]

4 Pr'obabilis‘rically \ [Hastad. Acta Math. 1999 [IDHPSUU. TCS 2011]

Checkable Proof theorem Max SAT .
o Maxmin SAT Reconf.

_ [AS.J.ACM1998]
PSPACE-complete What's going on?

28



Exercise 3
Gap-preserving reduction

from Max 3-SAT to Maxmin 5-SAT Reconf.

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

Gapiivs. 1-¢] 3-SAT ¢

n variables : Xy, ..., X,

Gap(1vs. 1-£] 5-SAT Reconf. (Y, 0ini, Otqr)
n+2 vars. : X1y eees an Y, Z

2m clauses @ CG;vyvz, .., C,VYyVZ
Civyvz, .., C,VyVz

+ Qi = Ome & Otar = Jn2

m clauses

asgmnts.

(Completeness) g satisfies all clauses of ¢ = 30 val, (o) =1

: — — €
(Soundness) V0 violates >e-frac. clauses of ¢ = Vo val (o) < 1—7

/A\ & must “touch” y=z =» Half of clauses look like: C; AC, A - A C,,

29



Toward PSPACE-comp. of approx...
NP-hard Max Ind. Set HMaxmin Ind. Set Reconf.

astad. 1
e Probabilistically ™ Hastad. Acta Math. 1999 [IDHPSUU. TCS 2011]

Checkable Proof theorem Max SAT .
[ALMSS. J. ACM 1998] [Héstad. J. ACM 2001] Maxmin SAT Reconf.

\ [AS.J.ACM1998] | [IDHPSUU. TCS 2011]

PSPACE-complete

*{ Max
o

Need a theory beyond
the PCP theorem for NP

Reconf. analogu
of PCP theorem

30



Reconf. analogue of the PCP theorem circa 2023
[O. STACS 2023]

.f Reconfiguration Inapproximability Hypothesis E

(formal statement omitted)
ﬂ equivalent

"3e >0 Gap[lvs. 1-¢] 3-SAT Reconf. is PSPACE-complete”
El6Goal: Distinguish between
(Completeness) IO valw(a’) =1 !
(Soundness) Vo val(p(a’) < 1-¢

every oY) satisfies all clauses

1-ef === some o® violates >e-frac. of clauses

o, 0@ o3 o2 gD 31

o’rar



Settling the open problem conditional on RIH

P hard H&sfﬁ/:laic]‘:rzc/iv.\g: T1999J\>[M0><m‘“ Ind. Set Reconf ]
" Probabilistically ] ' ' [IDHPSUU. TCS 2011]
Checkable Proof theorem Max SAT H :
o Maxmin SAT Reconf.
ALMSS. J. ACM 1998
. [ Ao T A 1998, ] y [Hdstad. J. ACM 2001] [TOHPSUU. TCS 2011]

PSPACE-complete
“““““““““ S [Maxmin Nonde'rer'minisfic}] Maxmin Ind. Set Reconf.

{'Reconf iguration

| Inapproximability i Constraint Logic v

| . .

E Hypothesis E\‘EM — S/j\T - f ] Maxmin Clique Reconf.]

‘\_[_(3_'_5_-‘_-6??_2_9%3_]_ _J axmin 3- econt. Reuse [Garey-Johnson-Stockmeyer.
+ Theor. Comput. Sci. 1976]
AIS this true? [Maxmin 2-SAT Reconf. over =econt. 37




Our main result
[Hirahara-O. STOC 2024] [Karthik C. S.-Manurangsi. 2023]

Probabilistically Checkable
Reconfiguration Proof theorem

I If_pp; PCP-like characterization of PSPACE
For any language L in PSPACE
3 a verifier V with O(log n) randomness & O(1) query complexity
3 poly-time alg. m;,; & T, s.t. for every input x € {0,1}"
xeL = 3 @O=m(x), .., mM=m,(x)) Vt Pr[V(x)accepts nl¥] =1
X¢L = V@O=m,(x), .., nMN=m,(x)) It Pr[V(x)accepts )] < 3
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The open problem resolved unconditionally
[Hirahara-O. STOC 2024] [Karthik C. S.-Manurangsi. 2023]

Probabilistically Checkable
Reconfiguration Proof theorem

ﬂ equivalent

3¢ >0 Gap[lvs. 1-¢] 3-SAT Reconf. is PSPACE-complete
e Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?
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How to prove the PCRP theorem?
[Hirahara-O. STOC 2024] [Karthik C. S.-Manurangsi. 2023]

3-SAT Reconf. Gap[l vs. 1-¢] 3-SAT Reconf.

YES 56 val,(6) = 1

Gap-prodycmg Completeness—
reduction e gap
Soundness™

NO

vo val, (o) < 1-¢

e Our luck: PCP of proximity (a.k.a. assignment testers)

[Ben-Sasson, Goldreich, Harsha, Sudan, Vadhan. SIAM J. Comput. 2006]
[Dinur-Reingold. STAM J. Comput. 2006]
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So the story ends..? (N

(@ Optimal PSPACE-completeness of approx.
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Outline of this talk

Part I
What is meant by "approximation”

Part IT
Complexity of approximating reconf. problems

Part ITI

Recent progress, STY‘"M@ & future directions
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Current status of Maxmin k-SAT Reconf.

PSPACE-COH‘\P. [Gopalan-Kolaitis-Maneva-
Papadimitriou. SIAM J. Comput. 2009]

PSPACE-comp. (PCRP thm.)
[Hirahara-O. STOC 2024]

PSPACE-comp.
[Hirahara-O. 202471 + PCRP thm.

NP-hard [Hirahara-0. 20241
P [Hirahara-0. 2024]

P [exercise]

III U
NN



Review of recent progress

problem polynomial time
;25
Maxmin k-SAT Reconf. Kk
[Hirahara-0. 2024]

2 [IDHPSUU. Theor.
Comput. Sci. 2011]

Minmax Set Cover Reconf.
Maxmin Ind. Set Reconf. n‘1

Maxmin 2-CSP Reconf. 0.5 [karthik C. s.-
Manurangsi. 2023]

2
Maxmin k-Cut Reconf. 1- k
[Hirahara-0O. 2024]

PSPACE-complete

1 - 0Q(97k)

[Hirahara-0O. 2024]

2 -0o(1)
[Hirahara-O. ICALP 2024]
n-0.001

[Hirahara-O. STOC 2024]

0.9942

[O. SODA 2024]

1- Q)

[Hirahara-0. 2024]
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”’ to transfer PCP tools to
Sﬁ" 5 the reconfiguration world

existing PCP tools

FGLSS reduction [Feige-Goldwasser-
Lovdsz-Safra-Szegedy. J. ACM 1996]

Degree reduction [Papadimitriou-
Yannakakis. J. Comput. Syst. Sci. 1991]
Gap amplification

[Dinur. J. ACM 2007]

Alphabet reduction
[Dinur. J. ACM 2007]

Parallel repetition theorem
[Raz. STAM J. Comput. 1998]

Long code test [Bellare-Goldreich-
Sudan. STAM J. Comput. 1998]

techniques in reconf. world

Alphabet squaring
[Hirahara-O. ICALP 2024]

Alphabet squaring
[0. STACS 2023]

Alphabet squaring
[O. SODA 2024]

Reconfigurability of Hadamard codes
[O. ICALP 2024]

/\ Applied to Max k-SAT
[H&stad. J. ACM 2001]
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Some future directions

1. Source problems in P
e Shortest Path Reconf. is PSPACE-complete [Bonsma. Theor. Comput. Sci. 2013]

e PSPACE-complete to approximate as well?

2. Puzzles
e Study approximability of Slidin ]Block Puzzle (?)

[Hearn-Demaine. Theor. Comput. Sci. 20
e (@ Hardness of approx. for planar Nondeterministic Constraint Logic

. : : - Logspace analogue of XP
3. Parameterized inapproximability

e k-Clique Reconf. & k-Dominating Set Reconf, are "XL-complete”
Bodlaender-Groenland-Nederlof-Swennenhuis, FOCS 2021]
[Bodlaender'—Groenland—Swennenhu|s. IPEC 2021]

e XL-complete to approximate?
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Conclusion & Takeaway

Resolved 4t open problem of
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 2011]

Now ready to study
hardness of approx. & approx. algorithms

for reconfiguration problems
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