2018/9/4 DEXA'18@Regensburg

Boosting PageRank Scores by Optimizing Internal Link Structure

Naoto Ohsaka (NEC / UTokyo) Tomohiro Sonobe (NII) Naonori Kakimura (Keio University) Takuro Fukunaga (RIKEN AIP) Sumio Fujita (Yahoo Japan Corp.) Ken-ichi Kawarabayashi (NII)

Overview of contributions

Q. How to boost PageRank by adding a few edges?

[1] Problem formulations

Finding K missing edges s.t. inserting them maximizes the minimum PageRank among T target vertices

[2] Complexity analysis

NP-hard to solve (and even to approximate)

[3] Algorithms

Greedy-based heuristic with a novel measurement of edges' contribution

[4] Experimental evaluations

Adding a few edges can increase PageRank scores

Example of experimental results

Task: inserting 80 edges that maximize the min. PageRank among 100 vertices

Subgraph induced by the 100 vertices (colored according to PageRank scores)

Google's notion PageRank (PR) [Brin-Page. 1998] [Page-Brin-Motwani-Winograd. 1999] Measures the importance of webpages based on the structure of graph G = (V, E) $\mathbf{x} = \alpha \mathbf{P} \mathbf{x} + (1 - \alpha)$ https://en.wikipedia.org/wiki/ File:PageRank-hi-res.png Decay factor = 0.85 Transition matrix Random-walk Stationary distribution interpretation PageKanł Random walk modeling web browsing Moves to a random out-neighbor w.p. α Jumps to a random vertex w.p. 1-α

Motivation of **boosting** PageRank

FACT: The distribution of PageRank is a power-law [Becchetti-Castillo. WWW 2006] [Fortunato-Boguñá-Flammini-Menczer. WAW 2006] [Pandurangan-Raghavan-Upfal. COCOON 2002]

E.g., Online advertising

Problem formulations PageRank (PR) boosting

G = (V, E): directed graph, $T \subseteq V$: set of targets K: # missing edges, L: threshold value

MPM(*T*, *K*): **Minimum PageRank Maximization** Find *K* edges not in *E* maximizing the min. PR among *T*

MinPTC(T, L): **Minimum PageRank Threshold Coverage** Find min. # edges not in E s.t. every PR in $T \ge L$

Generalization

MaxPTC(T, K, L): **Maximum PageRank Threshold Coverage** Find K edges not in E maximizing (# vertices in T of $PR \ge L$)

Problem formulations Related studies and known results

Outgoing edges from target vertices are allowed

[Avrachenkov-Litvak. Stoch. Model 2006] [Sydow. AWIC 2005] [de Kerchove-Ninove-Van Dooren. Linear Algebra Appl. 2008]

Optimal linking (clique-like) structure exists

Incoming edges to target vertices are allowed [Olsen. CIAC 2010] [Olsen-Viglas-Zvedeniouk. COCOA 2010] [Olsen-Viglas. Theor. Comput. Sci. 2014]

• Constant approx. is possible if |T| = 1

General case (Edges under control are allowed)

[Olsen. COCOON 2008] [Csáji-Jungers-Blondel. ALT 2010] [Csáji-Jungers-Blondel. Discrete Appl. Math. 2014]

- ► Polynomial time if |T| = 1
- ► A variant of MPM is NP-hard

Hardness results The three problems are NP-hard

Vertex Cover → MPM on a simple cubic graph Reduction

$\mathsf{MPM} \rightarrow \mathsf{MinPTC} \text{ or } \mathsf{MaxPTC}$

Reduction w/ bisection search

KEY: For any G and G' on V, x(v) = x'(v) or $|x(v) - x'(v)| \ge 1/|V|^{|v|+1}$

Vertex Cover is NP-hard (to approximate < 1.3606) [Dinur-Safra. Ann. Math. 2005]

Proposed algorithms Idea for MinPTC (See paper for other problems)

Recall: Find min. # new edges s.t. every PR in $T \ge L$

Use Greedy Algorithm (∵ Approx. for Vertex Cover) [Johnson. J. Comput. Syst. Sci. 1974] [Lovász. Discrete Math. 1975] [Chvatal. Math. Oper. Res. 1979] Repeatedly add a new edge (s, t) to G until every PR ≥ L

Key insight: adding edge (s, t), then x(t) increases [Avrachenkov-Litvak. 2004] [Ipsen-Wills. 2006]

Which s (in V) & t (in T) are good ?

Each iter. returns (s, t) s.t.

▶ t is a target with min. PageRank

▶ s is a vertex with max $\frac{x(s)}{d(s)+1}$

NOTE: [Olsen-Viglas-Zvedeniouk. COCOA 2010] [Olsen-Viglas. Theor. Comput. Sci. 2014] proposed this alg. for the case |T| = 1

Proposed algorithms Our approach for edge selection

• Directly measure the value of edge (s, t)

Proposed algorithms Our approach for edge selection

• Directly measure the value of edge (s, t)

Proposed algorithms Speeding-up techniques Each greedy iteration computes PageRank on G + (s, t) for every candidate (s, t) in V×T?

- 1. Discard small-PageRank vertices E.g., s should rank the top-|T|
- 2. Use dynamic (incremental) algorithms E.g., [O.-Maehara-K. KDD 2015] [Zhang-Lofgren-Goel. KDD 2016]

Experimental evaluations Results on MinPTC (See the paper for others)

settings		# inserted edges		run time [s]	
<i>T</i> = 100	L	proposed	naive	proposed	naive
Random	0.0001	101	<u>100</u>	840	3
Random	0.0008	<u>780</u>	1,027	4,577	20
2-hop	0.0001	<u>11</u>	32	100	1
2-hop	0.0008	<u>148</u>	233	1,019	5

Stanford webgraph (|V|=150K, |E|=1.6M) [Stanford Network Random : random 100 vertices 2-hop: 2-hop neighbors of a high-PR vertex

✓ Proposed alg. requires fewer edges than naive
 ✓ Proposed alg. scales million-edge networks

Environment: Linux server w/ Intel Xeon E5540 2.53 GHz CPU and 48 GB RAM 15

Conclusion and future work

4 contributions on PageRank boosting:
[1] Problem formulations
[2] Complexity analysis
[3] Algorithms
[4] Experimental evaluations

Approx. guarantee
 Constant factor when |T| = 1
 [Olsen-Viglas-Zvedeniouk. COCOA 2010]
 Difficulty: taking the minimum among T

 Further acceleration