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Example 1

E3-SAT RECONFIGURATION
[Gopalan–Kolaitis–Maneva–Papadimitriou 2009]

3-CNF formula φ = (x1∨x2∨x4) ∧ (x1∨x3∨x4) ∧ (x1∨x2∨x3) ∧ (x2∨x3∨x4)

Q. Path of satisfying assignments from αs to αe?
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Example 1

E3-SAT RECONFIGURATION
[Gopalan–Kolaitis–Maneva–Papadimitriou 2009]

3-CNF formula φ = (x1∨x2∨x4) ∧ (x1∨x3∨x4) ∧ (x1∨x2∨x3) ∧ (x2∨x3∨x4)

Q. Path of satisfying assignments from αs to αe?

YES
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Example 2

E3-SAT RECONFIGURATION
[Gopalan–Kolaitis–Maneva–Papadimitriou 2009]

3-CNF formula φ = (x1∨x2∨x4) ∧ (x1∨x3∨x4) ∧ (x1∨x2∨x3) ∧ (x2∨x3∨x4)

Q. Path of satisfying assignments from αs to αe?
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Example 2

E3-SAT RECONFIGURATION
[Gopalan–Kolaitis–Maneva–Papadimitriou 2009]

3-CNF formula φ = (x1∨x2∨x4) ∧ (x1∨x3∨x4) ∧ (x1∨x2∨x3) ∧ (x2∨x3∨x4)

Q. Path of satisfying assignments from αs to αe?

NO
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Motivation

Solution space for Boolean formulas
For random instances

⚫Solution space breaks down into exponentially many “clusters”
[Achlioptas/Coja-Oghlan/Ricci-Tersenghi 2011] [Mézard–Mora–Zecchina 2005]

⚫  Explain SAT solver performance
DPLL [Achlioptas–Beame–Molloy 2004] & Survey Propagation [Mézard–Parisi–Zecchina 2002]

In the worst-case scenario

⚫Dichotomy theorem [Gopalan–Kolaitis–Maneva–Papadimitriou 2009]

⚫  Every reconfiguration problem over Boolean formulas is

P or          PSPACE-complete
(linear diameter)                        (exponential diameter)
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Example 3

MAXMIN E3-SAT RECONFIGURATION
[Ito–Demaine–Harvey–Papadimitriou–Sideri–Uehara–Uno 2011]

ψ = (x1∨x2∨x3) ∧ (x1∨x2∨x3) ∧ (x1∨x2∨x3) ∧ (x1∨x2∨x4) ∧ (x2∨x3∨x4) ∧ (x1∨x3∨x4)

Q. Find a path maximizing the minimum fraction of satisfied clauses

approximate version

5 satisfied

4 satisfied
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MAXMIN E3-SAT RECONFIGURATION
[Ito–Demaine–Harvey–Papadimitriou–Sideri–Uehara–Uno 2011]
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Q. Find a path maximizing the minimum fraction of satisfied clauses

4

6
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5

6
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Complexity of MAXMIN E𝑘-SAT RECONF

⚫PSPACE-hard to solve exactly ∀𝑘 ≥ 3
[Gopalan–Kolaitis–Maneva–Papadimitriou 2009]

⚫NP-hard to approximate within 15
16

+ε if 𝑘 = 5

[Ito–Demaine–Harvey–Papadimitriou–Sideri–Uehara–Uno 2011]

⚫PSPACE-hard to approximate if 𝑘 = 3
[Hirahara–O. STOC 2024] [Karthik C. S.–Manurangsi 2023] [O. STACS 2023]

Q. What is asymptotic behavior of approximability 

w.r.t. the clause width 𝑘?
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Our results

Optimal approximation factor = 1 − Θ( 1
𝑘

)

1 − 
2.5
𝑘

1 − 
1

8𝑘

1 − 
1

10𝑘
(for all sufficiently large 𝑘)

NP-hard

PSPACE-complete

P

So what?
Similar results are known for reconf problems

[Hirahara–O. STOC 2024] [Hirahara–O. ICALP 2024 & 2025]
[Karthik C. S.–Manurangsi 2023] [O. STACS 2023]

[O. SODA 2024] [O. ICALP 2024 & 2025]
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αs

αe

Why surprising (at least to me)?

Implications for solution-space structure

 Random asgmt satisfies (1 − 1
2𝑘)-frac of clauses  (in expectation)

∴ Only 2−Ω(n)-frac of asgmts do not satisfy (1 − 1
10𝑘

)-frac of clauses

∴ Deleting “rare” bad asgmts makes st-CONNECTIVITY PSPACE-hard
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Why surprising (at least to me)?

First reconfiguration problem that is
harder to approximate than its NP analogue

problem threshold hardness refs.

MAXMIN E𝑘-SAT RECONF 1 − Θ(𝑘−1) PSPACE-h (this work)

MAX E𝑘-SAT 1 − 2−𝑘 NP-h [Håstad 2001]

MAXMIN 𝑘-CUT RECONF 1 − Θ(𝑘−1) PSPACE-h [Hirahara–O. 2025]

MAX 𝑘-CUT 1 − Θ(𝑘−1) NP-h [Frieze–Jerrum 1997]
[Kann–Khanna–Lagergren–Panconesi 1997]

MAXMIN 2-CSP RECONF ½ PSPACE-h [Karthik C. S.–Manurangsi 2023]
[O. 2024 & 2025]

MAX 2-CSP (poly N)−1 NP-h [Charikar–Hajiaghayi–Karloff 2011]
[Raz 1998]

MINMAX SET COVER RECONF 2 PSPACE-h [Hirahara–O. 2024] [IDHPSUU 2011] 
[Karthik C. S.–Manurangsi 2023]

MIN SET COVER ln N NP-h [Chvátal 1979] [Feige 1998]
[Johnson 1974] [Lovász 1975]

Easier

Easier

Equal

Harder



In the remainder of this talk...

Proof overview of PSPACE-hardness

of (1 − Ω( 1
1.92𝑘))-factor approximation

Still nontrivial
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Proof overview

Gap[1, 1−ε] E3-SAT RECONFIGURATION

Given 3-CNF formula φ & satisfying assignments αs, αe

optφ(αs, αe) ≔ optimal value of MAXMIN E3-SAT RECONFIGURATION

Distinguish between

(Completeness) optφ(αs, αe) = 1

(Soundness) optφ(αs, αe) < 1−ε

some α(t) violates ε-frac of clauses1−ε

1
every α(t) satisfies all clauses

αs α(2) α(3) ...  α(T-2) α(T-1) αe

0
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Proof overview

1 − Ω(1.92−𝑘) inapproximability
Consider 3 PCP verifiers  (𝑘 ≔ 3λ) Gap (completeness) − (soundness)

(Step 0) Gap[1, 1−ε] E3-SAT RECONF ε

(Step 1) 3λ-query Horn verifier VHorn Ω( ε
𝑘

)

(Step 2) 3λ-query OR verifier VOR Ω( ε
1.92𝑘 )

Find a path maximizing the minimum acceptance probability of V
optV(αs, αe) ≔ optimal value of verifier V

described by 𝑘-CNF formula
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Proof overview

(Step 1) 3λ-query Horn verifier VHorn

⚫Input: 3-CNF formula φ = C1 ∧ ... ∧ Cm

⚫Oracle access: assignment α

sample i1, i2, ..., iλ ~ [m]

If C ∨ C ∨ ⋯ ∨ C is satisfied by α then

return 1

else

return 0

(Completeness) optφ(αs, αe) = 1 ⟹ optHorn(αs, αe) = 1

(Soundness) optφ(αs, αe) < 1 − ε ⟹ optHorn(αs, αe) < 1 − Ω( ε
λ

)

i1 i2 iλ

Why?

Horn-like condition
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Proof overview

(Step 1) VHorn is “non-monotone”

useless

“C ∧ C ∧ ⋯ ∧ C is true”i1 i2 iλ

ε ≔ Pri[Ci is violated by α] Pr[VHorn rejects α] = ε(1−ε)λ−1⟹
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Proof overview

(Step 1) VHorn is “useful”

any path from αs to αe contains α◦ s.t. Pri[Ci is violated by α◦] ≈
ε
λ

⟹ Pr[VHorn rejects α◦] ≈ 
ε
λ

(1 − 
ε
λ
)λ−1 = Ω( ε

λ
)
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Proof overview

(Step 2) 3λ-query OR verifier VOR

VHorn's rejection condition:

C ∧ C ∧ ⋯ ∧ C

Emulate VHorn by an OR-predicate verifier VOR s.t.

Pr[VOR rejects α] = Pr[VHorn rejects α] ⋅
1

7λ−1

(Completeness) optHorn(αs, αe) = 1 ⟹ optOR(αs, αe) = 1

(Soundness) optHorn(αs, αe) < 1 − Ω( ε
λ

) ⟹

optOR(αs, αe) < 1 − Ω( ε
λ7λ−1 ) = 1 − Ω( ε

1.92𝑘)

i1 i2 iλ

(# rejecting local views) = 7λ−1
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Conclusions & open problems

Approximation threshold of MAXMIN E𝑘-SAT RECONF is 1 − Θ( 1
𝑘

)

Find more applications of “non-monotone” verifiers

Find a class of Boolean relations for which

MAXMIN SAT RECONF is harder to approximate than MAX SAT
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