A Reinforcement Learning Method to Improve the Sweeping Efficiency for an Agent

> The University of Electro-Communications Naoto Ohsaka Tokyo National College of Technology Daisuke Kitakoshi and Masato Suzuki 2011/11/09

Outline

- Background Information
- Sweeping Task Planning Problem
- LCRS
- Computer Simulations
- Conclusion

Background Information

Background Information (1)

- Domestic cleaning robot
 - One of general domestic robots
 - It wipes dust off a floor or removes trash while moving about a room
- Concept of typical cleaning robot such as Roomba
 - Sweeping the same field repeatedly

Roomba

Background Information (2)

- In this research, we focus on
 sweeping whole field as quickly as possible
- This research proposes a reinforcement learning method
 - Learning for Controlling Redundant Sweeping (LCRS)
- Objective of this research
 - To evaluate the basic characteristics and sweeping performance of LCRS
 - We carry out several computer simulations

Sweeping Task Planning Problem

Sweeping task planning problem

- We define *sweeping task planning* (*STP*) *problem* as
 - problem in which an agent aims to maximize an area of swept field as quickly as possible
- Hardware performances are constant
 Agent's moving speed
 - Type, performance and the number of sensors

Working field

- Virtual robot has a *sweeping field* (gray field)
- A moving trajectory of virtual robot's sweeping field is regarded as swept (red field)

LCRS

Main components of LCRS

- 1. Extension of definition of agent's state and setting of reward
 - Specialized for improving sweeping efficiency
- 2. Macro action
 - To help agent to detect different state
- 3. Reinforcement Learning
 - Learning method for agent's behavior

Definition of agent's state (1)

- Agent's state is defined as a combination of
- 1. Distances from the agent to obstacles
- 2. Binary parameter α_t
 - expressing whether front field is
 - already swept (=1)
 - or not swept (=0)

Virtual robot

- Agent's front field
 - If the agent go forward, it sweeps it's front field (black field)

Sweeping rate

• We define sweeping rate S_t at time t as

 $S_t = \frac{(\text{Area of swept field at } t)}{(\text{Area of working field})} \times 100[\%]$

• S_t expresses a rate for area of swept field to area of working field

• We define sweeping rate in agent's front field S'_t at time as $S'_t = \frac{(\text{Area of swept front field at }t)}{(\text{Area of front field})} \times 100[\%]$

- S'_t expresses the rate for agent's front field
- S'_t is used to determine the value of α_t

Definition of agent's state (2)

- The value of α_t is determined as
 - $1 \quad (S'_t \ge \theta)$
 - 0 (otherwise)
- Threshold θ has impact on agent's "activeness"
 - The value of θ is small \rightarrow Rough behavior
 - An agent does not care even if a certain amount of field is not swept yet
 - The value of θ is large \rightarrow Sensitive behavior
 - An agent considers having to sweep completely if even a bit of its front field is not swept

Setting of reward

• A reward which an agent acquires at time t is

$$r_t = \frac{\Delta S_t - \Delta S_{max}/2}{\Delta S_{max}/2}$$

 $\Delta S_t = S_t - S_{t-1}$ ΔS_{max} : maximum possible increment of S_t during a unit time step

• An area of field where the agent swept in a unit time step is normalized to [-1, 1]

Definition of macro action

- Macro action
 - Helps agent to detect different state
 - It enables agent to have a memory
 - Defined as 2-tuple

$$m = \big((s,a),M\big)$$

- □ (*s*, *a*):rule
- M: a set of macro actions

Macro action m_i

15

Examples of macro action
m_i = ((s_i, a_i), {m_j, m_k})
m_j = ((s_j, a_j), Ø)

Application of macro action (1)

1. At time step 1 1. Observe (S_i) or (S_j) S_i 2. Select m1 or m23. Output a_i or a_j 2. At time step 2 1. Observe $\left(\frac{s_k}{s_k}\right)$ 2. Output $\frac{a_k}{a_l}$ or $\frac{a_l}{a_l}$

Macro action m1

16

Macro action m2

Application of macro action (2)

• Observe (S_i)

- States of m1 and m2 are the same
- But, actions of m1 and m2 are different

Macro action m1

- An agent selects macro action stochastically using the value of macro action
- Q(m) indicates the value of macro action m• It expresses effectiveness of m

Reinforcement learning

- A kind of machine learning to adapt to an environment based on the concept of dynamic programming
- The learning method in LCRS : sarsa
- Q(m) is updated as follows

•
$$Q(m) \leftarrow (1 - \alpha)Q(m) + \alpha \left[\sum_{k=1}^{T} \gamma^{k-1} r_{t+k} + \gamma^{T}Q(m')\right]$$

- α : Learning rate
- γ : Discount rate
- m : macro action selected at t
- m' : macro action selected at t + T

Computer simulations

Evaluating basic characteristics and performance of LCRS

Settings of simulation environment

The initial position

of agent

- Simulation environment
 - Surrounded by perimeter walls
 - it has 11 random-sized obstacles
- In the beginning of sweeping task,
 - an agent is placed at the initial position
 - all swept field is reset to unswept
- When S_t reaches 80%, one episode ends

Settings of agent (virtual robot)

- An agent can detect
 - 1. Distances from obstacles in 3 directions (front, left and right)
 - 2. Whether its front field is swept or not (binary parameter α_t)
- The total number of its states = 54
- It takes one of 3 actions

Go forward, rotate (45[deg]) left and right

Settings of parameters

Parameters

Parameter	Value	Parameter	Value
α	0.1	<i>C</i> ₁	4
γ	0.9	<i>C</i> ₂	4
τ	0.5	β_1	1
N	100	β_2	1

- 1 trial is defined as 200 episodes
- In each experiment,
 - We run 10 trials and average the results

Experiment 1

\bullet We discuss the value of θ

- With small heta
 - Rough behavior
- With large heta
 - Sensitive behavior
- θ is fixed as 0,5,..., 100%
- We pay attention to episode 100 to 199
 In which the agent was able to acquire a stable policy

Result and discussions (1)

Relationships between the average number of steps for the task completion and $\boldsymbol{\theta}$

We discuss a difference between agent's behavioral characteristics with large and small $\boldsymbol{\theta}$

Result and discussions (2)

• The average number of steps for S_t in the case of $\theta = 100\%$ and 50%

Result and discussions (3)

- The average number of steps for S_t in the case of large θ and small θ

Result and discussions (4)

- In the first half,
 - there is no difference in the average number of steps
 - ${}^{\circ}$ heta does not impact on the sweeping efficiency
- In the second half,
 - the difference is clear
 - This is due to fragmentation and scattering of unswept field

Working field when the task completes in a typical episode

Result and discussions (5)

- Front field can be classified into 3 types
- Type 1 is regarded as unswept
- Type 3 is regarded as swept
- Type 2 is
 - Regarded as unswept (if θ takes large value)
 - Regarded as swept (if θ takes small value)
- The agent with small θ can hardly detect unswept field
- The agent with large θ can have more opportunities to detect fragmented small unswept field
- θ is fixed as 100% hereafter

Experiment 2

- We investigate components having impact on the sweeping efficiency
- We prepare 2 variants
 - sarsa(s) ··· sweeping rate is introduced into definition of state
 - sarsa(m) ··· sarsa with macro action

Sweeping algorithms

Sweeping algorithm	Definition of state	Macro action
sarsa(s)	\checkmark	Х
sarsa(m)	X	\checkmark
sarsa	Х	Х

 $\sqrt{}$: same as LCRS X : simplified

Result and discussions (1)

 Average number of steps for 4 sweeping algorithms

Sweeping algorithm	Average number of steps	
LCRS	4640	
sarsa(s)	6000	
sarsa(m)	6360	
sarsa	7320	

 We discuss a difference between the behavior of agent with sarsa and sarsa(m)

Result and discussions (2)

- At time step 3
 - In the case of sarsa,
 - 2 agents cannot distinguish each other's state
 - Because current states are seems to be the same (actually different)
 - In the case of sarsa(m) (an agent has a memory),
 - 2 agents can distinguish
 - Because states at time 2 are different from each other

Conclusion

Conclusion

- We proposed a reinforcement learning method LCRS to improve the sweeping efficiency of an agent
- The empirical results indicate
 LCRS agent behaves effectively

Conclusion

- 3 Future projects
 - Investigation of the impact of settings of environment on sweeping efficiency
 - Multi-agent environment
 - Real-world environment
 - Due to errors in the robot's motor control and sensor noise
 - Agent may not detect whether its front field has already swept
 - Introducing stochastic method into LCRS to overcome this problem