Coarsening Massive Influence Networks

for Scalable Diffusion Analysis

Naoto Ohsaka (UTokyo)

Tomohiro Sonobe (NII)

Sumio Fujita (Yahoo Japan Corp.)

Ken-ichi Kawarabayashi (NII)

Kawarabayashi Large Graph Project

Social network diffusion

A prime medium of information dissemination

Q. How to find the most influential group?

Marketing strategies [Domingos-Richardson. KDD'01]

Influence maximization

[Kempe-Kleinberg-Tardos. *KDD'03*]

Algorithmic problem on influence graphs

Diffusion analysis at scale

Effort on influence maximization methods

[KDD'03] [KDD'07] [AAAI'07] [KDD'09] [KDD'10] [WWW'11] [ICDM'12] [CIKM'13] [SODA'14] [AAAI'14] [SIGMOD'14] [CIKM'14] [SIGIR'14] [SIGMOD'15] [SIGMOD'16] ...

But ...

300M users & 60B links | 1.4B users & 400B links

No single state-of-the-art

[Arora-Galhotra-Ranu. SIGMOD'17] (next talk)

Our goal:

Scalable diffusion analysis via graph reduction

Studies on graph reduction

Reduce the size while preserving a *certain* property

Reachability [Zhou-Zhou-Yu-Wei-Chen-Tang. SIGMOD'17]

Clustering results [Satuluri-Parthasarathy-Ruan. SIGMOD'11]

Personalized PageRank [Vattani-Chakrabarti-Gurevich. ICML'11]

Edge cuts [Benczur-Karger. STOC'96]

Spectral properties [Spielman-Teng. STOC'04]

O not preserve diffusion properties

Reduction methods for *influence graphs*

SPINE [Mathioudakis-Bonchi-Castillo-Gionis-Ukkonen. KDD'11]

COARSENET [Purohit-Prakash-Kang-Zhang-Subrahmanian. KDD'14]

8 Low scalability & no quality guarantee

Our contribution

We propose

reduction strategy, scalable algorithm, analysis frameworks

Accuracy guarantee

1 hour for billion edges

 $2-30 \times faster$

Preliminaries

Independent cascade diffusion model

[Goldenberg-Libai-Muller. Market. Lett. '01]

▶ Influence graph G = (V, E, p) & Seed set $S \subseteq V$

Diffusion process on \mathcal{G}

Reachability on the random graph $G' \sim G$

Influence spread

$$\operatorname{Inf}_{\mathcal{G}}(S)$$

$$=\mathbf{E}_{G'\sim G}$$

 $= \mathbf{E}_{G' \sim \mathcal{G}} \begin{bmatrix} \text{# vertices reachable} \\ \text{from } S \text{ in } G' \end{bmatrix}$

[Kempe-Kleinberg-Tardos. KDD'03]

Preliminaries

Two influence analysis problems

Influence estimation seed set S Input Output $Inf_G(S)$

- #P-hard [Chen-Wang-Wang. KDD'10]
- + Monte-Carlo is good approx. Repeat random graph generation

Influence maximization

[Kempe-Kleinberg-Tardos. KDD'03]

integer k Input

 $\operatorname{argmax} \operatorname{Inf}_{G}(S)$ Output

S:|S|=k

- NP-hard [Kempe+'03]
- + Greedy strategy is

 $(1 - e^{-1}) \approx 63\%$ -approx.

[Nemhauser-Wolsey-Fisher. Math. Program. '78] $\operatorname{Inf}_{\mathcal{G}}(\cdot)$ is submodular [Kempe+'03]

Computation cost \approx Edge traversal cost

Design concept (1)

Our central idea = Coarsening

Make no distinction among vertices in a certain set

Design concept (2)

Our central idea = Coarsening

Make no distinction among vertices in a certain set

Design concept (3)

Our central idea = Coarsening

Make no distinction among vertices in a certain set

Design concept (4)

Our central idea = Coarsening

Make no distinction among vertices in a certain set

Coarsened influence graphs

We specify a vertex partition $\mathcal{P} = \{C_j\}_j$ Influence graph Coarsened

$$G = (V, E, p)$$

Coarsened influence graph $\mathcal{H} = (W, F, q)$ & weights w

Coarsened influence graphs

We specify a vertex partition $\mathcal{P} = \{C_j\}_i$ Influence graph Coarsened influence graph $\mathcal{H} = (W, F, q)$ & weights w $\mathcal{G} = (V, E, p)$ $w(c_1) = 3$ $W(c_{\Delta})=1$ $w(c_2) = 1$

Vertex in
$$C_j \mapsto \text{Weighted vertex } c_j$$

 $|C_j| = w(c_j)$

Coarsened influence graphs

We specify a vertex partition $\mathcal{P} = \{C_j\}_j$

Influence graph

$$\mathcal{G} = (V, E, p)$$

$$C_1$$
 V_1 V_2 C_2 0.2 V_3 0.2

Coarsened influence graph $\mathcal{H} = (W, F, q)$ & weights w

$$\mathbf{Pr}[v_2v_4 \text{ lives OR } v_3v_4 \text{ lives}] = \mathbf{Pr}[c_1c_2 \text{ lives}]
1 - (1 - p_{v_2v_4})(1 - p_{v_3v_4}) = q_{c_1c_2}
1 - (1 - 0.3)(1 - 0.2) = 0.44$$

Coarsened influence graphs

We specify a vertex partition $\mathcal{P} = \{C_j\}_j$

Influence graph

$$\mathcal{G} = (V, E, p)$$

Coarsened influence graph $\mathcal{H} = (W, F, q)$ & weights w

Wish: $\operatorname{Inf}_{\mathcal{G}}(\{v_2, v_8\}) \approx \operatorname{Inf}_{\mathcal{H}}(\{c_1, c_5\})$

So, what is a good partition?

Gap of influence between $\mathcal G$ and $\mathcal H$

Inf_G(·) \leq Inf_H(·) \leq $\frac{1}{\prod_{C_j \in \mathcal{P}} \text{Rel}(\mathcal{G}[C_j])}$ · Inf_G(·)

 $Rel(\mathcal{G}) := \mathbf{Pr}_{\mathcal{G}' \sim \mathcal{G}}[\mathcal{G}' \text{ is strongly connected}] \text{ (called$ *reliability* $)}$ $\mathcal{G}[\mathcal{C}_j] := \text{subgraph of } \mathcal{G} \text{ induced by } \mathcal{C}_j$

$$Rel\left(\begin{array}{c} 0.8 \\ 0.9 \\ 0.9 \end{array}\right) = 0.888848 \qquad Rel\left(\begin{array}{c} 0.9 \\ 0.7 \\ 0.9 \end{array}\right) = 0.504$$

Our answer for a good partition

We want a partition \mathcal{P} with high $\prod_{C_j \in \mathcal{P}} \text{Rel}(\mathcal{G}[C_j])$

- Exact computation of Rel(·) is #P-hard
 [Valiant. SIAM J. Comput. '79] [Ball. Networks'80]
- Approximate computation needs a large # samples

Our insight

We need high $Rel(\cdot)$ vertex sets only, so how about using just a *small* # samples?

strongly connected components

Definition of r-robust SCCs

C is an r-robust SCC w.r.t. r subgraphs G_1, \dots, G_r if

- ① C is strongly connected in every G_i
- ② C is maximal
- + No need to estimate Rel(G[C])

Sampled from $\mathcal G$ by keeping edge e w.p. p_e

Limitation & advantages of r-robust SCCs

No bound on $\prod_{C_j \in \mathcal{P}} \operatorname{Rel}(\mathcal{G}[C_j])$

 $\mathcal{P} \coloneqq \text{collection of } r\text{-robust SCCs}$ Justification from a theoretical point of view

Theorem 4.12

They *include* high $Rel(\cdot)$ vertex sets \longrightarrow Expected to preserve Inf(·)

Theorem 4.13

They are dense

→ Great reduction of # edges

Core-fringe structure

[Leskovec-Lang-Dasgupta-Mahoney. WWW'08] [Maehara-Akiba-Iwata-Kawarabayashi. PVLDB'14]

http://www.cise.ufl.edu/research/sparse /matrices/SNAP/soc-Epinions1.html

Our algorithm

Input : $G = (V, E, p) \otimes r$

Stage 1 : Extract r-robust SCCs

Stage 2 : Coarsen each r-robust SCC

Output : $\mathcal{H} = (W, F, q) \otimes W$

Speed-oriented
Scalability-oriented
Disk-based SCC algorithms
Space reduction technique

$$O(r(|V| + |E|))$$
 time $O(|V| + |E|)$ space

$$O(|V| + |E|)$$
 space

$$O(r(|V|+|E|))$$
 time $O(|V|+|F'|)$ space in practice $|F'| \ll |F|$ in practice

$$O(|V| + |F'|)$$
 space $|F'| \ll |F|$ in practice

Our frameworks

Influence estimation framework

Task : $Inf_{\mathcal{G}}(S)$

2. Estimate $Inf_{\mathcal{H}}(T)$ using *existing methods*

Est. of $Inf_{\mathcal{H}}(\{\mathbf{G},\mathbf{G}\})$

Our frameworks

Influence maximization framework

Task: $\operatorname{argmax} \operatorname{Inf}_{\mathcal{G}}(S)$ S:|S|=k

1. Extract T of size k from \mathcal{H} using existing methods

2. Map T onto \mathcal{G}

$$T = \{ \mathbf{G}, \mathbf{G} \}$$

Setup

Used social, communication, and web graphs from

Laboratory for Web Algorithmics, Stanford Network Analysis Project, Yahoo Japan Corp.

Probability setting

```
ightharpoonup exp(0.1)
                                                  Motivated by [Barbieri+'12] [Dickens+'12]
 trivalency \sim \{0.1,0.01,0.001\} [Chen+'10]
weighted = (indegree)<sup>-1</sup> [Kempe+'03] (see our paper)
uniform = 0.1 [Kempe+'03]
```

 \blacktriangleright uniform = 0.1

Algorithm settings

- ightharpoonup r = 16 (default)
- Use a disk-based SCC algorithm of [Laura-Santaroni. TAPAS'11]

Environment

▶ Intel Xeon E5-2690 2.90GHz CPU + 256GB memory & g++v4.6.3

Run time & memory usage

			speed-oriented		scalability-oriented	
dataset	V	<i>E</i>	run time	memory usage	run time	memory usage
soc-Slashdot0922	0.1M	0.9M	< 1s	< 1GB	6s	< 1GB
wiki-Talk	2M	5M	42s	< 1GB	57s	< 1GB
soc-Pokec	2M	31M	35s	1GB	224s	< 1GB
soc-LiveJournal1	5M	68M	95s	3GB	508s	1GB
twitter-2010	42M	1,468M	1,763s	50GB	11,522s	6GB
com-Friendster	66M	3,612M	3,964s	101GB	26,424s	8GB
uk-2007-05	105M	3,717M	3,106s	137GB	29,540s	11GB
ameblo	273M	6,910M		OOM	35,761s	28GB

Scale to large graphs Time & space $\propto |E|$ 10× 10× slower smaller

Graph size reduction

G = (V, E, p) input/original graph $\mathcal{H} = (W, F, q)$ output/coarsened graph

dataset	V	<i>E</i>	$ W /_{ V } \gg$	$ F _{\mid E\mid}$
soc-Slashdot0922	0.1M	0.9M	95.2%	36.0%
wiki-Talk	2M	5M	99.8%	61.4%
soc-Pokec	2M	31M	89.0%	43.4%
soc-LiveJournal1	5M	68M	92.8%	42.2%
twitter-2010	42M	1,468M	93.2%	23.5%
com-Friendster	66M	3,612M	71.2%	4.7%
uk-2007-05	105M	3,717M	97.3%	41.8%
ameblo	273M	6,910M	99.4%	79.3%

Achieved great reduction of # edges There is a giant & dense r-robust SCC

Influence estimation framework

Apply our framework to Monte-Carlo simulations

Run the diffusion process from a random vertex 10,000 times

dataset	Monte-Carlo	Our framework w/ Monte-Carlo	time reduction	edge reduction
soc-Slashdot0922	32s	8s	25.4%	36.0%
wiki-Talk	11s	7s	63.7%	61.4%
soc-Pokec	2,442.3s	897.1s	36.7%	43.4%
soc-LiveJournal1	5,349s	1,783s	33.3%	42.2%
twitter-2010	106,428s	24,212s	22.8%	23.5%
com-Friendster	540,483s	18,968s	3.5%	4.7%
uk-2007-05	5,719s	1,900s	33.2%	41.8%

Our framework's estimations are accurate (see our paper) mean average relative error $\leq 0.1~\&$ rank correlation coefficient ≥ 0.88

Influence maximization framework

Apply our framework to *D-SSA* [Nguyen-Thai-Dinh. *SIGMOD'16*] Extract a seed set of size 100

		run time			
dataset	<i>E</i>	D-SSA	Our framework w/ <i>D-SSA</i>	time reduction	
soc-Slashdot0922	0.9M	141 s	79 s	56.1%	
wiki-Talk	5M	522 s	155 s	29.7%	
soc-Pokec	31M	18,350s	6,216s	33.9%	
soc-LiveJournal1	68M	ООМ	ООМ	_	
twitter-2010	1,468M	ООМ	ООМ	_	
com-Friendster	3,612M	ООМ	OOM		
uk-2007-05	3,717M	ООМ	ООМ		

Our framework's solutions are comparable to *D-SSA* (see our paper)

Conclusion

Scalable influence analysis through graph reduction

- 1 Strategy
- 2 Algorithm
- ③ Frameworks

Future directions

- ► Finding *better* vertex partitions
- ► Other reduction strategies

 Not so effective for the weighted probability (see our paper)
- ► Parallelization & dynamic updates (see our paper)