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What are reconfiguration problems?

Transform initial state into target state by repeating small changes

5]6[7]8!

A Y I ME
13[14[15}

o Classical puzzles: 15-puzzles, Rubik's cube, sliding block puzzles

» Understand the structure of solution space
applications in dynamic environments

o Unified framework: defined w.r.t. feasibility & adjacenc
[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 11]

o Excellent surveys [Nishimura. Algorithms'18] [van den Heuvel. '13]




Example

3- SAT Reconfiguration

o Input:  3-CNF formula ¢ & satisfying o, o,
e Output: o = (0O=q,, ..., 0®V=0,) s.t.
o) satisfies ¢ (feasibility)
Ham(o("l), G(i)) =1 (adjacency on hypercube)

YES case %5100
= (XVyVvz) A (XvyVZ) A (XVYyVZ)

o, =(1,0,0)
=(0,1,0)
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Example

3- SAT Reconfiguration

o Input:  3-CNF formula ¢ & satisfying o, o,
e Output: o = (0O=q,, ..., 0®V=0,) s.t.
o) satisfies ¢ (feasibility)
Ham(o("l), G(i)) =1 (adjacency on hypercube)

NO case

= (XVyVvz) A (XvyVZ) A (XVYyVZ)
o, =(1,0,0)

=(1,1,1)

010 o11ﬁx

110 -illlcr,r



Our focus & motivation:
Approximate reconfigurability

Even if...
« @NOT reconfigurable! and/or
» @ many problems are PSPACE-completel

Still want a "reasonable” sequence (quickly)
(e.g) made up of almost-satisfying assignments

4

Relax feasibility to obtain optimization variants



Example’
Maxmin 3-SAT Reconfiguration

[ITto-Demaine-Harvey-Papadimitriou-Sideri- Uehar'a Uno. Theor. Comput. Sci. '11]
o Input:  3-CNF formula ¢ & satisfying o, o;
e Output: o = (0¥=q,, ..., 0®V)=0,) s.1.

a@%eﬂla#n@sw (feasibility)

Ham(ol-D, 0{)) = 1 (adjacency on hypercube)

e Goal: max, val (a) min. (frac. of satisfied clauses by o()
o __ L 05100 101
= (XVyVvz) A (XVyVZ) A (XVyVZ)
o0, = (1,0,0)
e 0; = (1,1,1)

=» val (o) = 2/3

010 011
10—V 1110;



Known results on optimization variants

(@ How computationally hard?

Approximability
[Tto+. Theor. Comput. Sci.'11] [Ito-Demaine. J. Comb. Optim. '14] [O.-Matsuoka. WSDM'22]

o Set Cover Reconf., Subset Sum Reconf., Submodular Reconf.

Are the problems in Section 4 PSPACE-hard to approximate (not just NP-hard)?

NP-hardness of approximation =

[Ito-Demaine-Harvey-Papadimitriou-Sideri-Uehara-Uno. Theor. Comput. Sci. 11]
o SAT Reconfiguration & Clique Reconfiguration
1 Rely on NP-hardness of combinatorial optimization problems...

Significance of showing PSPACE-hardness...
e no poly-time algorithm (P z PSPACE)
e no poly-length sequence (NP # PSPACE)



Our working hypothesis & question

Reconfiguration Inapproximability Hypothesis (RIH)
g-ary CSP G & satisfying y,, y;, PSPACE-hard to distinguish between
o Y V(llG(W) =1 (some sequence violates no constraint)
o VY vaIG(w) < 1-¢ (any sequence violates >e-frac. of constraints)

e True if "NP-hard" is used 1
[Ito+. Theor. Comput. Sci.'11] e 2

e Reconfiguration analogue
of the PCP theorem (?)

(WSI W(l)z I} W-l)' WT>

Q. Which reconfiguration problems are
PSPACE-hard to approximate under (seemingly) plausible RIH?



Our results

» Under RIH, many problems are PSPACE-hard to approximate!

degree reduction applications

BCSP; Reconf E3-SAT(B) Recont Independent Set Reconf
Corollary 4.1

bounded occurrence
Lemma 3.6
Theorem 3.1

S

Hypothesis 2.4

!

[ q-CSPw Reconf]

[ BCSP, Reconf 1: ‘Nondeterministic ( Clique Vertex Cover |
E3-SAT Reconf : : . .
. 25 bounded degree | : Constraint Logic Reconf Reconf
cmma o. Lemma 3.7 Proposition 4.1 Corollary 4.2 Corollary 4.3

---------------------------

Sequence of gap-preserving reductions

@ Our reductions preserve perfect completeness
-» YES instance have a solution for (original) decision version



Main result
Maxmin 3-SAT Reconflgur‘a‘non of bounded occurrence

o Input: 3-CNF formula @ of bounded occurrence & sa’risfying O, O
e Output: o = (0O=q,, ..., 0®V=0,) s.t.
Ham(o("l), U(i)) =1 (adjacency on hypercube)
Define the value of best sequence:
OPT, (o, «» 0,) & max, min; (frac. of clauses satisfied by o(")

Under RIH, PSPACE-hard to distinguish between
¢ OPT (0s ¢ 0;) =1 (30 every o satisfies ), or
e OPT (05 ¢» 0;) < 1-£ (Vo some 0@ violates e-frac. of clauses)

10



Most technical step in this paper
Degree reduction of reconfiguration problems

o Gap, ;. Binary CSP Reconfiguration
Promise: OPT, (g, «v» y,) =1 or OPT (g, ¢» y,) < 1-¢

¥ /\Reduction preserving gap & reconfigurability

o Gap; 1., Binary CSP Reconfiguration of max. degree A
Promise: OPT, . (y'; «» ¢'.) =1or OPT (¢, «v» y',) < 1-¢
@A & ' depend only on ¢

Why important?
Can reduce to Maxmin 3-SAT Reconfiguration of bounded occurrence
11



In the remainder of this talk...
Proof sketch of degree reduction

12



In the remainder of this talk...
Proof sketch of degree reduction

e Recap of degree reduction of Binary CSP
[Papadimitriou-Yannakakis. J. Comput. Syst. Sci. 91] also used by [Dinur. J. ACM'07]

» Simple application of - to Binary CSP Reconfiguration
looses perfect completeness

o TRICK: Alphabet squaring
o @ Preserves perfect completeness
e & But, NOT a Karp reduction

o Sketching soundness proof
o Why we use expander mixing lemma & near-Ramanujan graphs

13



Recap of degree reduction of Binary CSP

[Papadimitriou-Yannakakis. J. Comput. Syst. Sci. '91]

o Input:  Binary CSP G=(V E,Z,TT=(m,).c)
e Output: y: V-2
 Goal: max, (frac. of edges satisfied by y)
OPT(G) & value of y satisfies (v,w) if (W(v), y(w)) € Ty,

cloud(v)
O

@High degreel=»

Original 6=(V E,Z,TT) New G'=(V',E" Z,TT") .
1



Recap of degree reduction of Binary CSP

[Papadimitriou-Yannakakis. J. Comput. Syst. Sci.'91]

Original graph G New graph G’
e Completeness: OPT(G) =1 = OPT(G') =1
e Soundness: OPT(G)<1l-¢ = OPT(G') < 1-¢’

cloud(v) SHOULD behave like a single assignment
e Equality constraints on intra-cloud edges
e cloud(v) should be sparse yet well-connected = @ expander graphs

15



Loosing perfect completeness on
Maxmin Binary CSP Reconfiguration

e Input:  Binary CSP G=(V,E, 2, TT=(m,).ce), satisfying y,, y;: VX
e Output: ¢ = (yO=y,, .., y®O=y,) s.t. Ham(ylD, y®) =1
o Goal: max, min; (frac. of edges satisfied by y()

OPT. (g, v y,) & value of

A\OPT (y, ¢ y,) =1+ OPT(y'y ev y'y) =1
cloud(v

16



Loosing perfect completeness on
Maxmin Binary CSP Reconfiguration

e Input:  Binary CSP G=(V,E, 2, TT=(m,).ce), satisfying y,, y;: VX
e Output: ¢ = (yO=y,, .., y®O=y,) s.t. Ham(ylD, y®) =1
o Goal: max, min; (frac. of edges satisfied by y()

OPT. (g, v y,) & value of

A\OPT (y, ¢ y,) =1+ OPT(y'y ev y'y) =1

cloud(v) cloud(v cloud(v)

@) Cannot reconfigure without violating any equality constraints



TRICK: Alphabet squaring

(@ Think as if vertex could take a pair of values!
e Original ~ ={a, b, ¢}
o New >'={a, b, c, ab, bc, ca}

Constraint for inter-cloud edge e'=(v',w')
e Original m, = {(a,b), (a,c)}
o New ', = {(a,b), (a,c), (a,bc)}

Equality-LIKE constraint for intra-cloud edge e'=(v' v")
o', ={(a, p): aSp or pca}

= {(a,a), (b,b), (c,c), (ab,a), (ab,b), (bc,b), (bc,c), (ca,c), (ca,a), (a,ab), (b,ab), (b,bc), (c,bc), (c,ca), (a,ca), (ab,ab), (bc,bc), (ca,ca)}
18



@ Alphabet squaring
preserves perfect completeness

(@ Think as if vertex could take a pair of values!
e Original ~ ={a, b, ¢}
o New >'={a, b, c, ab, bc, ca}

Constraint for inter-cloud edge e'=(v',w')
e Original m, = {(a,b), (a,c)}
o New ', = {(a,b), (a,c), (a,bc)}

Equality-LIKE constraint for intra-cloud edge e'=(v' v")

' .
o . ={(a, p): ach or p<da}
= {(a,a), (b,b), (c,c), (ab,a), (ab,b), (bc,b), (bc,c), (ca,c), (ca,a), (a,ab), (b,ab), (b,bc), (c,bc), (c,ca), (a,ca), (ab,ab), (bc,bc), (ca,ca)}

19



& Alphabet squaring is NOT a Karp reduction

e Input:  Binary CSP G=(V,E,x T1=(m,),.ce), satisfying y,, y;: VX
o Output: ¢ = (yO=y,, ..., y®=y,) s.t. Ham(o(-D), o) =1
o Goal: max, min; (frac. of edges satisfied by y()

OPT. (g, v y,) & value of

Apply degree reduction with AS Z1 Zy  Zn
A OPT (y, «v 9,) <13 OPT,(y's em ¢'y) < 1
o "."Can assign conflicting values to cloud(v)

without sacrificing any constraint
(See my paper for concrete example =»)




Sketch of soundness proof

Observation
@6Goal: OPT (y, v ) <1l-e = OPT (y', e»y')<1-¢'
g = (YO, . ¢®) ¢ Optimalg' = ('@, ., p'®)

plurality vote

elety @ y0&y' «y'Dst "y®is the WORST assignment”
D, & {vertices of cloud(v) disagreeing y(v)} cloud(v)
o Can assume Zv |Dv| =O(€|E|) o2

similarly to [Papadimitriou-Yannakakis. J. Comput. Syst. Sci.'91]

@3S, & T, of size O(|D,|) s.t. “y' violates all E(S,,T,)"

21



Sketch of soundness proof

Bounding # of (violated) edges

» How large is E(S,,T,)? < Expander mixing lemmal
[Alon-Chung. Discret. Math. '88]

degree of cloud(v)

——d|S,[-|T,]|
|E(Sv:Tv)| = I — 1A IsvllTv|

cloud(v)l—1

2nd eigval of cloud(v) /\ Should be small
o Get A/d < ¢ by setting Axe! & d~g2

using near-Ramanujan graphs T —
[ﬁ/\lgkr\‘drﬁ%/rﬁg"bzolr]melI-Par'edes. SIAM J. Comput. '21] @ |E(SV’ V)l O(| Dvl)

o If |D,| = O(e-cloud(v)) (hold for many v)

Taking sum over v (of large D,) derives
(total frac. of violated edgesinG') >¢' >0

22



Conclusion and future work

Combinatorial reconfiguration X Hardness of approximation

(" Is Reconfiguration Inapproximability Hypothesis true...?
o Use gap amplification? [dinur. 7. Acm'07]

e Reduce from PSPACE-hard inapproximable problems?
[Condon-Feigenbaum-Lund-Shor. Chic. J. Theor. Comput. Sci. 95]
o Adapt a Karp reduction from TQBF

to Nondeterministic Constraint Logic?
[Hearn-Demaine. Theor. Comput. Sci.'05]

o Even if false, NP-hardness of approximation
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