
Dynamic Influence Analysis

in Evolving Networks

2016/09/8 VLDB 2016

Naoto Ohsaka (UTokyo)

Takuya Akiba (PFN)

Yuichi Yoshida (NII & PFI)

Ken-ichi Kawarabayashi (NII)

Influence estimation

Influence maximization
[Kempe-Kleinberg-Tardos. KDD'03]

Influence analysis in online social networks

2

Introduction

Application: viral marketing
[Domingos-Richardson. KDD'01]

Product promotion through

word-of-mouth effects

Q. How influential is a given group?

Q. How to select the most influential group?

Graph problems

Sample

Sample

Sample

Existing algorithms for influence maximization
(2003ー2015)

3

Introduction

Strategy Scalability Accuracy

Simulation
[Kempe-Kleinberg-Tardos. KDD'03]

[Kimura-Saito-Nakano. AAAI'07]

[Chen-Wang-Yang. KDD'09]

[O.-Akiba-Yoshida-Kawarabayashi. AAAI'14]

<100M edges

Quadratic time

Good

≈ 63% approx.

Heuristics
[Chen-Wang-Yang. KDD'09]

[Chen-Wang-Wang. KDD'10]

[Jung-Heo-Chen. ICDM'12]

100M－1B edges Bad

No guarant.

Sketching
[Borgs-Brautbar-Chayes-Lucier. SODA'14]

[Tang-Xiao-Shi. SIGMOD'14]

[Tang-Shi-Xiao. SIGMOD'15]

>1B edges

Near-linear time

Good

≈ 63% approx.

These algorithms are static

Real-world social networks are dynamic

↙our previous work

4

Social networks are dynamic and evolving

Introduction

b

a

b

a

b

a

 Methods are almost undeveloped
[Zhuang-Sun-Tang-Zhang-Sun. ICDM'13]

Probing a small number of vertices

[Chen-Song-He-Xie. SDM'15] Edge operations only

Want to track influential vertices

Simply applying static methods ⇝ >Linear time

Accounts and friendships appear or disappear

Our contribution

Introduction

Fully-dynamic indices

for influence analysis in evolving networks

b

a

I1

b

a

I2

a is influential b's influence is 3

①Indexing
Almost-linear size

②Analysis query
Accuracy guarant.

③Index update
Any change

①
③

② ②

Diffusion model: Independent cascade
[Goldenberg-Libai-Muller. Market. Lett.'01]

6

Problem definition

Graph 𝐺 = (𝑉, 𝐸, 𝑝) with edge probabilities

Seed set 𝑆 ⊆ 𝑉

a

b

d

fe

c
a

b

d

fe

c
a

b

d

fe

c

0.6 0.1

0.3

0.4 0.8

0.2 0.5

Active to Inactive
▶ Success w.p. 𝑝uv

▶ Failure w.p. 1 − 𝑝uv

Initialize vertex's state
▶ Active if ∈ 𝑆
▶ Inactive if ∉ 𝑆

u v

Diffusion model: Independent cascade
[Goldenberg-Libai-Muller. Market. Lett.'01]

7

Problem definition

Graph 𝐺 = (𝑉, 𝐸, 𝑝) with edge probabilities

Seed set 𝑆 ⊆ 𝑉

a

b

d

fe

c
a

b

d

fe

c
a

b

d

fe

c

0.6 0.1

0.3

0.4 0.8

0.2 0.5

Influence spread

𝜎 𝑆 ≔ 𝐄[# active vertices given 𝑆]

Problem definition

Problem definition

Influence

estimation
Input seed set 𝑆
Output 𝜎 𝑆

Influence

maximization
[Kempe-Kleinberg-Tardos. KDD'03]

Input integer 𝑘

Output

#P-hard
[Chen-Wang-Wang. KDD'10]

Monte-Carlo is good approx.

NP-hard [Kempe+'03]

Greedy strategy is

𝟏 − 𝐞−𝟏 ≈ 63%-approx.
[Nemhauser-Wolsey-Fisher. Math. Program.'78]

𝜎 ⋅ is submodular [Kempe+'03]
argmax
𝑆: 𝑆 =𝑘

𝜎 𝑆

Key: fast & accurate estimation of 𝜎(⋅)

∀𝑋 ⊆ 𝑌, 𝑣 ∉ 𝑌
𝜎 𝑋 + 𝑣 − 𝜎 𝑋 ≥ 𝜎 𝑌 + 𝑣 − 𝜎 𝑌

8

Proposed method
What we need:
① Indexing algorithm

② Influence query algorithms

③ Update algorithms

①

②

③

9

z

a

b

d

fz

c
a

b
z

c

Index construction

Proposed method ①Indexing algorithm

Single sketch construction：
▶ Randomly select a target vertex

▶ Conduct a reverse simulation from
▶ Sketch＝('s) ∪ ('s)

z
z

Redesign of Reverse Influence Sampling
[Borgs-Brautbar-Chayes-Lucier. SODA'14]

a

f

z
a

z

Index size = # + ∑ 's in-deg = Θ 𝜖−3(𝑉 + |𝐸|) log 𝑉

10

Property of our index

Proposed method ②Influence query algorithms

Vertices frequently appearing in sketches are influential

𝜎(𝑆) ∝ 𝐄[# sketches intersecting 𝑆]
[Borgs-Brautbar-Chayes-Lucier. SODA'14]

I1
＝

a

f

z
a

b
z

c
a

z

11

Query algorithms for influence analysis

12

Proposed method ②Influence query algorithms

Based on Reverse Influence Sampling
[Borgs-Brautbar-Chayes-Lucier. SODA'14]

Influence estimation query (seed set 𝑆)

▶ Computing the size of union on sketches

▶ 𝝈 𝑺 ± 𝝐 𝑽 w.h.p. (Thm. 5.9)

Influence maximization query (solution size 𝑘)

▶ Solving maximum coverage on sketches

▶ 𝟏 − 𝐞−𝟏 − 𝝐 -approx. w.h.p. (Thm. 5.10)

We further introduce speed-up techniques (see our paper)

Overview of index update algorithms

Proposed method ③Update algorithms

Independently update each sketch so that
“all can reach by passing through ”z

3 edge operations

▶ Edge addition

▶ Edge deletion

▶ Probability change

2 vertex operations

▶ Vertex addition

▶ Vertex deletion

a

b

d

fz

c
a

b

d

fz

c
a

b

d

fz

c
Del ac Add db

⇝ Non-degeneracy = No need reindexing (Thm. 5.8)

13

Edge deletion example (1)

14

Proposed method ③Update algorithms

z

v
u

Q. “Vertices that can reach ” decrease?z

Edge deletion example (1)

15

Proposed method ③Update algorithms

z

v
u

Q. “Vertices that can reach ” decrease?

A. NO

z

Edge deletion example (2)

16

Proposed method ③Update algorithms

u
v

z

Q. “Vertices that can reach ” decrease?z

Has no

out-neighbors

Edge deletion example (2)

17

Proposed method ③Update algorithms

u
v

z

Q. “Vertices that can reach ” decrease?

A. YES

z

Perform a reverse BFS from

To detect , need to scan all

How about naive update for edge deletion?

Proposed method ③Update algorithms

z
＼SLOW／

z
v

u

u
v

z

Challenge 2:

Efficient reverse BFSes
Challenge 1:

Detour detection

18

Fast edge deletion: Using reachability tree

19

Proposed method ③Update algorithms

A directed subtree of a sketch rooted on

 Detour existence check

 Limiting the search range
* Can be used for vertex deletion

z

z

Fast edge deletion:

Detour existence check

20

Proposed method ③Update algorithms

uv ∉ tree ⇒ ∃ a detour from to
* not vice versa

z

v
u

zu

10% deletions are pruned

Fast edge deletion:

Limiting the search range

21

Proposed method ③Update algorithms

Verify a subtree Tu rooted on & update tree

u
v

z

Tu
a few nodes

in ave.

u

> 100,000 nodes
in ave.

Fast edge deletion:

Limiting the search range

22

Proposed method ③Update algorithms

u
v

z

Verify a subtree Tu rooted on & update treeu

Tu
a few nodes

in ave. > 100,000 nodes
in ave.

Why our techniques are effective?

23

Proposed method ③Update algorithms

http://www.cise.ufl.edu/research/sparse/

matrices/SNAP/soc-Epinions1.html

Core-fringe structure

Fringe is tree-like

Tu is small

2nd tech. works well

Core is dense

Many detours

1st tech. works well

[Leskovec-Lang-Dasgupta-Mahoney. WWW'08]

[Maehara-Akiba-Iwata-Kawarabayashi. PVLDB'14]

Core

Fringe

http://www.cise.ufl.edu/research/sparse/matrices/SNAP/soc-Epinions1.html

Experiments
Index construction

Index update

Influence estimation query

Influence maximization query

Efficiency of

▶ Dataset：Koblenz Network Collection http://konect.uni-koblenz.de/

with timestamps at which edge was created

▶ Machine: Intel Xeon E5-2690 2.90GHz CPU + 256GB RAM

▶ Compiler: g++v4.6.3 (-O2)

▶ Index size = 32 𝑉 + |𝐸| log 𝑉
▶ Edge prob. = randomly chosen from {0.1, 0.01, 0.001}

24

http://konect.uni-koblenz.de/

Index construction

25

Experiments

89

5,468

1

10

100

1,000

10,000

In
d

e
x

in
g

 t
im

e
 [

s]

1

31

1

10

100

M
e
m

o
ry

 u
sa

g
e
 [

G
B

]

Network |𝑽| |𝑬|

Epinions 130K 840K

Flickr 2,303K 33,140K

▶ Can handle graphs with tens of millions of edges
▶ Indexing is required just once

Index update time:

Edge operations

26

Experiments

89,100

4
1

163

6

5,468,000

90

2

1,706

125

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

Indexing Edge add. Edge del. Edge del.

(naive BFS)

Prob.

change

P
ro

c
e
ss

in
g

 t
im

e
 [

m
s]

▶ (Update time) ≪ (Indexing time)

Network |𝑽| |𝑬|

Epinions 130K 840K

Flickr 2,303K 33,140K

>100x speed-up

Index update time:

Vertex operations

27

Experiments

▶ (Update time) ≪ (Indexing time)

▶ Vertex del. causes a number of edge dels.

89,100

1

15

575

5,468,000

0

459

10,000

1.E-04

1.E-02

1.E+00

1.E+02

1.E+04

1.E+06

Indexing Vertex add. Vertex del. Vertex del.

(naive BFS)

P
ro

c
e
ss

in
g

 t
im

e
 [

m
s]

Network |𝑽| |𝑬|

Epinions 130K 840K

Flickr 2,303K 33,140K

0.001

>10,000

>10x speed-up

459

Influence estimation queries:

Time for estimating the influence of a vertex

28

Experiments

▶ Tracking 1M nodes/sec
Just perform table lookup

89,000

0

6,000 9,000

5,468,000

0

100,000
350,000

1.E-04

1.E-01

1.E+02

1.E+05

A
v
e
ra

g
e
 t

im
e
 [

m
s]

MC
[Kempe+'03]

RIS
[Borgs+'14]

Indexing Query

Network |𝑽| |𝑬|

Epinions 130K 840K

Flickr 2,303K 33,140K

This work Static methods

0.97μs 1.62μs

Influence maximization queries:

Time for selecting a seed set of size 100

29

Experiments

RIS
[Borgs+'14]

IMM
[Tang+'15]

PMC
[Ohsaka+'14]

IRIE
[Jung+'12]

Query

This work Static methods

▶ >10 times faster
Solve max. coverage

1

10

39

11 13 16

361
173

497

0.1

1

10

100

1000

R
u

n
 t

im
e
 [

s]

O
u

t-
o

f-
m

e
m

o
ry

Network |𝑽| |𝑬|

Epinions 130K 840K

Flickr 2,303K 33,140K

Future directions

▶ More space saving for billion-scale graphs

▶ Fast influence maximization query

Maximum Coverage in online setting

Proposed fully-dynamic indices

for influence analysis in evolving networks

① Indexing graphs w/ >10M edges in a few hours

② Reflect any graph change in 1 sec.

③ Fast influence analysis queries

Conclusion

30

