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Influence estimation

Influence maximization
[Kempe-Kleinberg-Tardos. KDD'03]

Influence analysis in online social networks
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Introduction

Application: viral marketing
[Domingos-Richardson. KDD'01]

Product promotion through

word-of-mouth effects

Q. How influential is a given group?

Q. How to select the most influential group?

Graph problems

Sample

Sample

Sample



Existing algorithms for influence maximization 
(2003ー2015)
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Introduction

Strategy Scalability Accuracy

Simulation
[Kempe-Kleinberg-Tardos. KDD'03]

[Kimura-Saito-Nakano. AAAI'07]

[Chen-Wang-Yang. KDD'09]

[O.-Akiba-Yoshida-Kawarabayashi. AAAI'14]

<100M edges

Quadratic time

Good

≈ 63% approx.

Heuristics
[Chen-Wang-Yang. KDD'09]

[Chen-Wang-Wang. KDD'10]

[Jung-Heo-Chen. ICDM'12]

100M－1B edges Bad

No guarant.

Sketching
[Borgs-Brautbar-Chayes-Lucier. SODA'14]

[Tang-Xiao-Shi. SIGMOD'14]

[Tang-Shi-Xiao. SIGMOD'15]

>1B edges

Near-linear time

Good

≈ 63% approx.

These algorithms are static

Real-world social networks are dynamic

↙our previous work
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Social networks are dynamic and evolving

Introduction

b

a

b

a

b

a

 Methods are almost undeveloped
[Zhuang-Sun-Tang-Zhang-Sun. ICDM'13]

Probing a small number of vertices

[Chen-Song-He-Xie. SDM'15] Edge operations only

Want to track influential vertices

Simply applying static methods ⇝ >Linear time

Accounts and friendships appear or disappear



Our contribution

Introduction

Fully-dynamic indices

for influence analysis in evolving networks

b

a

I1

b

a

I2

a is influential b's influence is 3

①Indexing
Almost-linear size

②Analysis query
Accuracy guarant.

③Index update
Any change

①
③

② ②



Diffusion model: Independent cascade
[Goldenberg-Libai-Muller. Market. Lett.'01]
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Problem definition

Graph 𝐺 = (𝑉, 𝐸, 𝑝) with edge probabilities

Seed set 𝑆 ⊆ 𝑉
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0.6 0.1

0.3

0.4 0.8

0.2 0.5

Active to Inactive
▶ Success w.p. 𝑝uv

▶ Failure w.p. 1 − 𝑝uv

Initialize vertex's state
▶ Active if ∈ 𝑆
▶ Inactive if ∉ 𝑆

u v



Diffusion model: Independent cascade
[Goldenberg-Libai-Muller. Market. Lett.'01]
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Problem definition

Graph 𝐺 = (𝑉, 𝐸, 𝑝) with edge probabilities

Seed set 𝑆 ⊆ 𝑉
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Influence spread

𝜎 𝑆 ≔ 𝐄[# active vertices given 𝑆]



Problem definition

Problem definition

Influence

estimation
Input seed set 𝑆
Output 𝜎 𝑆

Influence

maximization
[Kempe-Kleinberg-Tardos. KDD'03]

Input integer 𝑘

Output

#P-hard
[Chen-Wang-Wang. KDD'10]

Monte-Carlo is good approx.

NP-hard [Kempe+'03]

Greedy strategy is

𝟏 − 𝐞−𝟏 ≈ 63%-approx.
[Nemhauser-Wolsey-Fisher. Math. Program.'78]

𝜎 ⋅ is submodular [Kempe+'03]
argmax
𝑆: 𝑆 =𝑘

𝜎 𝑆

Key: fast & accurate estimation of 𝜎(⋅)

∀𝑋 ⊆ 𝑌, 𝑣 ∉ 𝑌
𝜎 𝑋 + 𝑣 − 𝜎 𝑋 ≥ 𝜎 𝑌 + 𝑣 − 𝜎 𝑌
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Proposed method
What we need:
① Indexing algorithm

② Influence query algorithms

③ Update algorithms

①

②

③
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Index construction

Proposed method ①Indexing algorithm

Single sketch construction：
▶ Randomly select a target vertex

▶ Conduct a reverse simulation from 
▶ Sketch＝( 's) ∪ ( 's)

z
z

Redesign of Reverse Influence Sampling
[Borgs-Brautbar-Chayes-Lucier. SODA'14]

a

f

z
a

z

Index size = #     + ∑ 's in-deg = Θ 𝜖−3( 𝑉 + |𝐸|) log 𝑉
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Property of our index

Proposed method ②Influence query algorithms

Vertices frequently appearing in sketches are influential

𝜎(𝑆) ∝ 𝐄[# sketches intersecting 𝑆]
[Borgs-Brautbar-Chayes-Lucier. SODA'14]

I1
＝
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f
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b
z

c
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z
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Query algorithms for influence analysis
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Proposed method ②Influence query algorithms

Based on Reverse Influence Sampling
[Borgs-Brautbar-Chayes-Lucier. SODA'14]

Influence estimation query (seed set 𝑆)

▶ Computing the size of union on sketches

▶ 𝝈 𝑺 ± 𝝐 𝑽 w.h.p. (Thm. 5.9)

Influence maximization query (solution size 𝑘)

▶ Solving maximum coverage on sketches 

▶ 𝟏 − 𝐞−𝟏 − 𝝐 -approx. w.h.p. (Thm. 5.10)

We further introduce speed-up techniques (see our paper)



Overview of index update algorithms

Proposed method ③Update algorithms

Independently update each sketch so that
“all     can reach      by passing through       ”z

3 edge operations

▶ Edge addition

▶ Edge deletion

▶ Probability change

2 vertex operations

▶ Vertex addition

▶ Vertex deletion

a
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d

fz
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c
Del ac Add db

⇝ Non-degeneracy = No need reindexing (Thm. 5.8)
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Edge deletion example (1)
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Proposed method ③Update algorithms

z

v
u

Q. “Vertices that can reach      ” decrease?z



Edge deletion example (1)
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Proposed method ③Update algorithms

z

v
u

Q. “Vertices that can reach      ” decrease?

A. NO

z



Edge deletion example (2)
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Proposed method ③Update algorithms

u
v

z

Q. “Vertices that can reach      ” decrease?z

Has no

out-neighbors



Edge deletion example (2)
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Proposed method ③Update algorithms

u
v

z

Q. “Vertices that can reach      ” decrease?

A. YES

z



Perform a reverse BFS from

To detect      , need to scan all

How about naive update for edge deletion?

Proposed method ③Update algorithms

z
＼SLOW／

z
v

u

u
v

z

Challenge 2:

Efficient reverse BFSes
Challenge 1:

Detour detection
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Fast edge deletion: Using reachability tree
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Proposed method ③Update algorithms

A directed subtree of a sketch rooted on 

 Detour existence check

 Limiting the search range
* Can be used for vertex deletion

z

z



Fast edge deletion:

Detour existence check
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Proposed method ③Update algorithms

uv ∉ tree ⇒ ∃ a detour from     to    
* not vice versa

z

v
u

zu

10% deletions are pruned



Fast edge deletion:

Limiting the search range
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Proposed method ③Update algorithms

Verify a subtree Tu rooted on     & update tree

u
v

z

Tu
a few nodes

in ave.

u

> 100,000 nodes
in ave.



Fast edge deletion:

Limiting the search range
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Proposed method ③Update algorithms

u
v

z

Verify a subtree Tu rooted on     & update treeu

Tu
a few nodes

in ave. > 100,000 nodes
in ave.



Why our techniques are effective?
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Proposed method ③Update algorithms

http://www.cise.ufl.edu/research/sparse/

matrices/SNAP/soc-Epinions1.html

Core-fringe structure

Fringe is tree-like

Tu is small

2nd tech. works well

Core is dense

Many detours

1st tech. works well

[Leskovec-Lang-Dasgupta-Mahoney. WWW'08]

[Maehara-Akiba-Iwata-Kawarabayashi. PVLDB'14]

Core

Fringe

http://www.cise.ufl.edu/research/sparse/matrices/SNAP/soc-Epinions1.html


Experiments
Index construction

Index update

Influence estimation query

Influence maximization query

Efficiency of

▶ Dataset：Koblenz Network Collection http://konect.uni-koblenz.de/

with timestamps at which edge was created

▶ Machine: Intel Xeon E5-2690 2.90GHz CPU + 256GB RAM

▶ Compiler: g++v4.6.3 (-O2)

▶ Index size = 32 𝑉 + |𝐸| log 𝑉
▶ Edge prob. = randomly chosen from {0.1, 0.01, 0.001}
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http://konect.uni-koblenz.de/


Index construction
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Experiments
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▶ Can handle graphs with tens of millions of edges
▶ Indexing is required just once



Index update time:

Edge operations
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Experiments
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Index update time:

Vertex operations
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Experiments

▶ (Update time) ≪ (Indexing time)

▶ Vertex del. causes a number of edge dels.
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Influence estimation queries:

Time for estimating the influence of a vertex
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Experiments

▶ Tracking 1M nodes/sec
Just perform table lookup
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This work Static methods
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Influence maximization queries:

Time for selecting a seed set of size 100
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Experiments

RIS
[Borgs+'14]

IMM
[Tang+'15]

PMC
[Ohsaka+'14]

IRIE
[Jung+'12]

Query

This work Static methods

▶ >10 times faster
Solve max. coverage

1 

10 

39 

11 13 16

361
173

497

0.1

1

10

100

1000

R
u

n
 t

im
e
 [

s]

O
u

t-
o

f-
m

e
m

o
ry

Network |𝑽| |𝑬|

Epinions 130K 840K

Flickr 2,303K 33,140K



Future directions

▶ More space saving for billion-scale graphs

▶ Fast influence maximization query

Maximum Coverage in online setting

Proposed fully-dynamic indices

for influence analysis in evolving networks

① Indexing graphs w/ >10M edges in a few hours

② Reflect any graph change in 1 sec.

③ Fast influence analysis queries

Conclusion
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